
Design Instagram - System Design Interview

MAR 20, 2025 ∙ PAID

6 Share

With over 2 billion monthly active users, Instagram is the 3rd most popular social
network after Facebook and YouTube.

source: https://www.makeuseof.com/tag/what-are-instagram-highlights/

It enables users to upload photos and videos, interact with content, while handling
hundreds of millions of daily visitors, managing petabytes of data, billions of views,
while maintaining low latency and high availability.

Given its scale and complexity, designing Instagram is a popular system design
interview question.

ASHISH PRATAP SINGH

65

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 1/25

https://blog.algomaster.io/p/design-instagram-system-design-interview/comments
javascript:void(0)
https://substack.com/@ashishps
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc5014a9d-8b68-4408-acc9-70dd79976073_2100x1400.jpeg

While Instagram supports a wide range of features including direct messaging, Ree
and Stories—this article will primarily focus on the core functionality of photo and
video sharing.

We’ll walk through every step of the design—from requirements and high-level
architecture to database and API design—before diving deep into core use cases.

Before diving into the design, lets outline the functional and non-functional
requirements.

1. Users can upload photos and videos.

2. Users can add captions to their posts.

3. Users can follow/unfollow other users.

4. Users can like, share, and comment on posts.

5. Support for multiple images/videos in a single post (carousel).

6. Users can view a personalized feed consisting of posts from accounts they follo

7. Users can search by username and hashtag.

1. Direct messaging.

2. Short-form video content (Reels).

3. Push Notifications for likes, comments, and follows.

1. Requirement Clarification

Functional Requirements

Out of Scope

Non Functional Requirements

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 2/25

1. Low Latency: The feed should load fast (~100ms).

2. High Availability: The system should be available 24/7 with minimal downtime

3. Eventual Consistency: A slight delay in users seeing the latest posts from
accounts they follow is acceptable.

4. High Scalability: Handle millions of concurrent users and billions of posts.

5. High Durability: The uploaded photos/videos shouldn’t be lost.

Total Monthly Active Users (MAUs): 2 billion

Daily Active Users (DAUs): → 500 million users/day

100M media uploads/day

Each upload generates metadata writes (DB + cache)

Total write requests: 100M uploads + 100M metadata writes = 200M writes/day

Assume an average user scrolls through 100 posts per session

500 million DAUs × 100 posts viewed = 50B feed requests/day

Assuming 80% of feed reads are served from cache, backend reads = 10B DB
reads/day

2. Capacity Estimation

User Base

Estimating Read & Write Requests

Post Uploads (Writes)

Feed Reads

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 3/25

20% of DAUs (100M) upload media every day

80% of uploads are photos, 20% are videos

Average photo size: 1MB

Average video size: 10 MB

Photos: (100M × 80%) × 1 MB = 80 TB/day

Videos: (100M × 20%) × 10 MB = 200 TB/day

Total storage per day: 280 TB/day

Metadata per post: ~500 bytes (caption, timestamp, author, engagement counts

Total posts in a year: 100M × 365 = 36B posts

Metadata storage per year: 90 TB/year

Hot cache size: Store recent & popular 1 billion posts

Assume each cached post takes 2 KB (post data + engagement counts)

Cache size = 2 TB for active posts (Redis/Memcached)

Estimating Storage Requirements

Assumptions

Daily Storage Calculation

Database Storage

Caching Requirements

3. High Level Design

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 4/25

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F8135f33f-0201-4056-ab34-c17e84ef2fd3_2864x2578.png

Users interact with the platform via web browsers or mobile apps.

The client applications handle video playback, user interactions (likes, commen
and UI rendering.

Components:

1. Clients (Web, Mobile)

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 5/25

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F8135f33f-0201-4056-ab34-c17e84ef2fd3_2864x2578.png

They communicate with backend services through an API Gateway or Load
Balancer.

Acts as the single entry point for all client requests.

Distributes incoming traffic across multiple service instances to ensure high
availability and scalability.

Enforces rate limiting, authentication, and authorization before forwarding
requests to downstream services.

Stores and manages user authentication, profile data, and social connections
(follow/unfollow).

Handles photo/video uploads and stores metadata (caption, user info, timestam

Coordinates the upload of media files from users device to Object Storage (e.g.
AWS S3) and updates metadata in a database.

Uses a message queue (e.g., Kafka) to notify the Feed Service when a new post
created.

Precomputes and stores user feeds in a high-performance cache (e.g., Redis,
Memcached) to enable fast retrieval.

Queries the database if a feed is not cached.

Manages likes, comments, and shares.

2. Load Balancer / API Gateway

3. User Service

4. Post Service

5. Feed Service

6. Engagement Service

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 6/25

Writes engagement data to a high-throughput database asynchronously via a
message queue.

Allows users to search for other users, hashtags, and posts.

Uses Elasticsearch to index and retrieve data quickly.

Supports autocomplete and full-text search for improved user experience.

Decouples services and ensures event-driven processing.

Notifies the Feed Service of new posts.

Updates engagement data asynchronously.

Photos/videos are stored in a distributed object Storage (S3, Google Cloud
Storage).

A CDN (Cloudflare, AWS CloudFront) ensures fast delivery globally.

A large-scale content platform like Instagram requires handling both structured da
(e.g., user accounts, post metadata) and unstructured/semistructured data (e.g., pho
videos, search indexes).

Typically, you’ll combine multiple database solutions to handle different workloads

Given the requirements, we will use a relational database (e.g., PostgreSQL, MySQ
for structured data and a NoSQL database (Cassandra, DynamoDB, or Elasticsearc

7. Search Service

8. Message Queue

9. Object Storage & CDN

4. Database Design

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 7/25

for feed storage and search indexing.

Given the structured nature of user profiles and posts metadata, a relational databa
(like PostgreSQL or MySQL) is often well-suited.

Users Table: Stores user account details.

Posts Table: Stores metadata related to posts.

4.1 Relational Database for Structured Data

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 8/25

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F6c938096-4295-4c68-b951-af830fcad2b1_3680x3008.png

Media Table: Stores photo/video metadata, but not the actual files.

Comments Table: Stores post comments.

Shares Table: Stores post shares.

Followers Table: Maintains the follow/unfollow relationship. Stores engagemen
score from followers to help with ranking posts in the feed.

While relational databases are ideal for structured data, they struggle with high-
velocity writes and large scale distributed workloads. NoSQL databases like
Cassandra, DynamoDB, or Redis provide horizontal scalability and high availabilit

To reduce feed generation latency, a denormalized feed table stores precomputed
timelines:

Updated asynchronously via Kafka when a user posts.

Cached in Redis for quick retrieval.

To support complex relationship queries, such as mutual friends, suggested followe
and influencer ranking, we can use a graph database like Neo4j or Amazon Neptun

4.2 NoSQL Databases for High-Volume Data

{
 "user_id": 56789,
 "feed": [
 {"post_id": 111, "user_id": 123, "media_url": "s3://path1",
"caption": "Hello world"},
 {"post_id": 112, "user_id": 234, "media_url": "s3://path2",
"caption": "Sunset view"}
]
}

Using Graph Databases for Social Connections

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 9/25

They efficiently model follower-following relationships with nodes and edges.

Example Query: "People You May Know"

This allows real-time friend suggestions without complex SQL joins.

To support fast and scalable search queries, we can leverage Elasticsearch, a
distributed, real-time search engine optimized for full-text searches.

Each user profile and post metadata can be stored as a document in an Elasticsearc
index, allowing quick lookups and advanced filtering.

Example: Storing User Data in Elasticsearch

To support trending hashtags and keyword searches, we can store hashtags in a
separate Elasticsearch index.

Example:

MATCH (me:User {id:12345})-[:FOLLOWS]->(friend)-[:FOLLOWS]->(suggested)
WHERE NOT (me)-[:FOLLOWS]->(suggested)
RETURN suggested LIMIT 5

4.3 Search Indexes

{
 "user_id": 12345,
 "username": "john_doe",
 "full_name": "John Doe",
 "bio": "Photographer | Traveler"
}

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 10/25

Instagram handles petabytes of photos/videos, requiring a durable and low-latency
storage solution.

A distributed object storage system, such as Amazon S3, is well-suited for storing
media files. It supports pre-signed URLs, enabling users to upload media directly
without routing through application servers, reducing load and latency.

To ensure high durability, media files are stored in multiple replicas across differen
data centers, protecting against data loss.

To further optimize read latency, content can be cached closer to users using a
Content Delivery Network (CDN) like Cloudflare or Amazon CloudFront. This
reduces load times and improves the user experience, especially for frequently
accessed media.

{
 "hashtag": "#travel",
 "post_count": 1500000,
 "last_used": "2025-03-20T12:00:00Z"
}

4.4 Media Storage

5. API Design

5.1 Get User Profile

GET /api/v1/users/{user_id}
Authorization: Bearer JWT_TOKEN

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 11/25

Response:

Form Data:

Response:

{
 "user_id": 12345,
 "username": "john_doe",
 "full_name": "John Doe",
 "profile_pic": "https://cdn.example.com/profile.jpg",
 "followers_count": 200,
 "following_count": 150
}

5.2 Follow a User

POST /api/v1/users/{user_id}/follow
Authorization: Bearer JWT_TOKEN

5.3 Create a New Post

POST /api/v1/posts
Authorization: Bearer JWT_TOKEN
Content-Type: multipart/form-data

caption: "Sunset at the beach"
media: [image1.jpg, video1.mp4]

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 12/25

Response:

Response:

{
 "post_id": 98765,
 "message": "Post uploaded successfully"
}

5.4 Get a Post by ID

GET /api/v1/posts/{post_id}

{
 "post_id": 98765,
 "user_id": 12345,
 "caption": "Sunset at the beach",
 "media": [
 "https://cdn.example.com/photo1.jpg",
 "https://cdn.example.com/video1.mp4"
],
 "likes_count": 500,
 "comments_count": 120
}

5.5 Get User Feed

GET /api/v1/feed?page=1&limit=10
Authorization: Bearer JWT_TOKEN

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 13/25

[
 {
 "post_id": 123,
 "user": {
 "user_id": 56789,
 "username": "travel_lover"
 },
 "caption": "Exploring the mountains!",
 "media": ["https://cdn.example.com/photo123.jpg"],
 "likes_count": 1200,
 "comments_count": 85
 },
 {
 "post_id": 124,
 "user": {
 "user_id": 98765,
 "username": "foodie_dude"
 },
 "caption": "Delicious sushi!",
 "media": ["https://cdn.example.com/photo124.jpg"],
 "likes_count": 980
 }
]

5.6 Like a Post

POST /api/v1/posts/{post_id}/like
Authorization: Bearer JWT_TOKEN

5.7 Comment on a Post

POST /api/v1/posts/{post_id}/comment
Authorization: Bearer JWT_TOKEN
Content-Type: application/json

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 14/25

Response:

{
 "content": "Amazing shot!"
}

5.8 Get Comments for a Post

GET /api/v1/posts/{post_id}/comments?page=1&limit=10

[
 {
 "comment_id": 65432,
 "user": {
 "user_id": 12345,
 "username": "john_doe"
 },
 "content": "Amazing shot!",
 "created_at": "2025-03-18T12:34:56Z"
 },
 {
 "comment_id": 65433,
 "user": {
 "user_id": 67890,
 "username": "nature_lover"
 },
 "content": "Breathtaking view!"
 }
]

5.9 Search Users

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 15/25

Response:

1. User Initiates the Upload

a. The user selects one or more photos or videos and enters a caption.

b. The client (mobile app/web browser) sends an upload request to the API
Gateway.

2. API Gateway Handles the Request

a. The API gateway authenticates and validates the request.

b. Routes the request to the Post Service.

3. Post Service Generates a Pre-signed URL

a. Instead of uploading media directly through the backend, the Post Service
generates pre-signed URLs from Object Storage (one per media file).

GET /api/v1/search/users?q=john

[
 {
 "user_id": 12345,
 "username": "john_doe",
 "full_name": "John Doe",
 "profile_pic": "https://cdn.example.com/profile.jpg"
 }
]

6. Design Deep Dive

6.1 Photo/Video Upload

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 16/25

b. It sends the pre-signed URLs back to the client.

4. Client Uploads Media to Object Storage

a. The client directly uploads each file in parallel to Object Storage via the pre
signed URLs.

b. This reduces backend load and enables faster parallel uploads.

c. Once all uploads are complete, the client sends a confirmation request to th
backend with all media URLs.

5. Post Service Saves Metadata in the Database

a. The Post Service stores post metadata (caption, timestamp, user ID) in the
Posts table and stores each media file separately in the Media Table.

6. Kafka Publishes a "New Post" Event

a. The Post Service sends an event to Kafka, notifying the Feed Service.

Since users follow both normal users and celebrities, the system must mix posts
efficiently.

For normal users with a manageable number of followers, we use fan-out-on-write
meaning posts are pushed to followers’ feeds at the time of posting.

1. User A posts a new photo/video.

2. The Post Service sends an event to Kafka, notifying the Feed Service.

3. The Feed Service identifies the users followers (e.g., 500 followers).

6.2 Newsfeed Generation

Fan-out-on-write (Push Model) for Normal Users

How It Works

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 17/25

4. The post is immediately inserted into each follower’s timeline, stored in Redis (
cache).

5. When followers open their feeds, posts are instantly available, ensuring low-
latency reads.

Example: LPUSH - Add Post to Followers’ Feeds

User 12345 (John Doe) posts a new photo

He has 500 followers

The Feed Service pushes this post to all 500 followers' feeds

Here, John's post is pushed to the feeds of followers 56789, 67890, and 78901, alo
with 497 other followers.

Example: Fetching a User’s Feed (LRANGE - Get Recent Posts)

LPUSH feed:56789 "{'post_id': 98765, 'author': 'john_doe', 'media_url':
'https://cdn.instagram.com/photo98765.jpg', 'caption': 'Sunset at the
beach!', 'timestamp': '2025-03-20T14:30:00Z'}"

LPUSH feed:67890 "{'post_id': 98765, 'author': 'john_doe', 'media_url':
'https://cdn.instagram.com/photo98765.jpg', 'caption': 'Sunset at the
beach!', 'timestamp': '2025-03-20T14:30:00Z'}"

LPUSH feed:78901 "{'post_id': 98765, 'author': 'john_doe', 'media_url':
'https://cdn.instagram.com/photo98765.jpg', 'caption': 'Sunset at the
beach!', 'timestamp': '2025-03-20T14:30:00Z'}"

...

LRANGE feed:56789 0 9 # Fetch the latest 10 posts from user 56789's
feed

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 18/25

Benefits:

Super-fast reads since followers' feeds are pre-loaded.

Works efficiently for small and medium-sized accounts.

Challenges:

Becomes inefficient for users with millions of followers (e.g., celebrities).

Writing a post requires copying it to potentially millions of timelines, leading t
high write amplification.

For celebrities and influencers, where a single post may need to reach millions of
followers, preloading into every follower’s feed is impractical.

Instead, a fan-out-on-read (pull model) is used.

1. When a user requests their newsfeed, the Feed Service dynamically retrieves:

Normal users’ posts from Redis (precomputed feeds).

Celebrity posts from a hot cache (Redis) or a persistent store (PostgreSQL).

2. The system merges both types of posts in real-time before serving the feed.

Benefits:

Avoids massive write operations, keeping the system scalable.

Ensures fresh data when users request feeds.

Challenges:

Slightly higher read latency than the push model.

Fan-out-on-read (Pull Model) for Celebrities

How It Works

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 19/25

Requires caching optimization to reduce database lookups.

1. A New Post/User is Created

a. A user uploads a post or creates an account.

b. The Post/User stores metadata in the database.

c. The Post/User Service publishes an event to Kafka.

2. Search Service Updates Elasticsearch Index

a. The Search Service consumes Kafka events and adds new users, posts, or
hashtags to Elasticsearch.

1. User Initiates a Search Request

a. The user types a query in the search bar (e.g., "john_doe" or "#travel")

b. The client (mobile/web) sends a request. The request is routed via the API
Gateway to the Search Service.

2. Search Service Queries Elasticsearch

a. The Search Service first checks Redis Cache for recent searches. If not foun
queries Elasticsearch for relevant results.

b. Elasticsearch performs full-text search, prefix matching and ranking based
engagement/popularity.

3. Elasticsearch Returns Results

a. Elasticsearch returns ranked results matching the query.

b. The Search Service formats the response.

6.3 Search

Indexing New Content

Search Request

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 20/25

4. Search Results are Cached in Redis

a. The Search Service caches frequent queries in Redis for faster lookups.

b. Next time a user searches for the same query, the result is served from Redi
instantly.

The Engagement Service processes like, comment and share requests.

It sends a Kafka event to update the DB asynchronously.

Like event:

Share event:

{
 "users": [
 { "user_id": 12345, "username": "john_doe", "full_name":
"John Doe", "profile_pic": "https://cdn.example.com/john.jpg" },
 { "user_id": 67890, "username": "johnny_depp", "full_name":
"Johnny Depp", "profile_pic":
"https://cdn.example.com/johnny.jpg" }
],
 "hashtags": [
 { "tag": "travel", "post_count": 10M },
 { "tag": "travelphotography", "post_count": 5M }
]
}

6.4 Like, Comments and Shares

{
 "event": "POST_LIKED",
 "user_id": 12345,
 "post_id": 67890
}

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 21/25

Comment event:

To optimize the latency for popular posts, we can cache like / share count and top
comments.

Scalability ensures the system can handle increasing load without degrading
performance.

Use distributed databases (Cassandra, DynamoDB) to distribute data across nod

{
 "event": "POST_SHARED",
 "user_id": 12345,
 "post_id": 67890
}

{
 "event": "POST_COMMENTED",
 "user_id": 12345,
 "post_id": 67890,
 "comment_id": 99999,
 "content": "Amazing shot!"
}

7. Addressing Scalability, Availability and
Durability

7.1 Scalability

Horizontal Scaling (Scale Out)

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 22/25

Deploy multiple instances of services behind a load balancer to handle user
requests.

Implement sharding to split large datasets.

User Data → Shard by user_id mod N

Posts → Shard by post_id mod N

Followers Table → Shard by follower_id mod N

Break the system into independent services (e.g., Feed Service, Post Service, Us
Service) to improve maintainability and scalability.

Use message queues (Kafka, RabbitMQ) to handle high-throughput operations
asynchronously (e.g., processing notifications, updates, and feed generation).

Availability ensures that Instagram remains accessible 24/7, even in the face of failu
Given its global user base, the platform must achieve atleast 99.99% uptime.

Maintain replicated databases across multiple regions (e.g., PostgreSQL replica
Cassandra multi-region clusters).

Deploy multiple application servers across different availability zones (AZs).

Use automatic failover in databases (e.g., leader-follower setup in PostgreSQL,
multi-leader Cassandra clusters).

Implement circuit breakers to gracefully degrade service if a dependency fails.

Sharding

Microservices Architecture

7.2 Availability

Redundancy & Replication

Failover Mechanisms

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 23/25

Durability ensures that data—especially user-generated content (photos, videos,
comments, likes)—is never lost, even in case of system failures.

Store media in Amazon S3 / Google Cloud Storage, which replicates data across
multiple locations to prevent loss.

Use multi-region replication (Cassandra, DynamoDB, PostgreSQL replicas) for
disaster recovery.

Perform regular backups to prevent accidental data loss.

Implement WAL in databases to ensure changes are recorded before committin

Use event sourcing to log user actions (e.g., new posts, likes) and rebuild state if
necessary.

Thank you for reading!

If you found it valuable, hit a like ❤ and if you have any questions or suggestions,
leave a comment.

I hope you have a lovely day!

See you soon,

Ashish

7.3 Durability

Distributed Object Storage

Database Replication & Backups

Write-Ahead Logging (WAL) & Event Sourcing

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 24/25

65 Likes ∙ 6 Restacks

Discussion about this post

Previous Next

Write a comment...

© 2025 Ashish Pratap Singh ∙ Privacy ∙ Terms ∙ Collection notice
Substack is the home for great culture

Comments Restacks

5/1/25, 10:31 PM Design Instagram - System Design Interview

https://blog.algomaster.io/p/design-instagram-system-design-interview 25/25

https://substack.com/note/p-159419884/restacks?utm_source=substack&utm_content=facepile-restacks
https://substack.com/privacy
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/

