
Design Spotify

MAY 02, 2025 ∙ PAID

Share

Spotify is the most popular music streaming platform in the world, with over 600
million monthly active users (MAU) and 200 million paid users.

In this article, we will learn how to design a music streaming service like Spotify th
can handle 100s of millions of users and billions of music streams every day ensuri
low latency and high availability.

ASHISH PRATAP SINGH

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 1/20

https://blog.algomaster.io/publish/post/157750429
javascript:void(0)
https://substack.com/@ashishps
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fdd42f322-95e8-4ddd-b7c7-daa32055dbec_2684x1756.png

Before diving into the design, lets outline the functional and non-functional
requirements.

Search: Users can search for songs, artists, albums, and playlists.

Music Streaming: Users can stream songs in real time.

Playlists: Users can create, share, and modify playlists.

Music Recommendations: Users receive song recommendations based on their
listening history and preferences.

Ad-Supported Model: Free-tier users will encounter ads after a few songs.

1. Scalability: The system should handle 100s of millions of users globally and the
ability to stream millions of songs concurrently.

2. Low Latency: Real-time streaming must have low latency for a seamless user
experience.

3. High Availability: The system must be available at all times with minimal
downtime.

4. Global Reach: Support users from different geographic regions, potentially
leveraging CDNs to serve audio files faster.

Let’s assume the following traffic characteristics:

1. Requirements Gathering

1.1 Functional Requirements:

1.2 Non-Functional Requirements:

2. Capacity Estimation

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 2/20

User Base:

Total active users: 500 million

Daily active users: 100 million

Average streams per user per day: 10

Average song size: 5 MBs

Average song duration: 4 minutes

Song catalog size: 100 million songs

Daily song streams = 100M users × 10 songs = 1 billion streams/day.

Data transfer per day = 1 billion × 5 MB = 5 petabytes/day.

Data transfer per second = 5 petabytes / 86400 = 58 gigabytes/second

Total storage for music = 100 million songs × 5 MB/song = 500 terabytes.

Assuming 2 KB of metadata per song and 10 KB of metadata per user (user details,
preferences, playlists etc..)

Total song metadata storage = 100 million songs × 2 KB = 200 GB.

Total storage for 500 million users = 500 million × (10 KB) = 5 TB.

Caching plays a significant role in reducing the load on the storage system and
ensuring low latency for popular content.

2.1 Network Bandwidth Estimation

2.2 Storage Estimation

2.3 Caching Estimation

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 3/20

Frequently played song metadata can be cached in memory.

Lets assume top 20% songs contribute to 80% of the requests.

Assuming Spotify has 100 million songs and the top 20% are cached.

Cache size = 20 million songs × 2 KB/song = 40 GB.

The system architecture of Spotify can be broken down into several high-level
components:

3. High Level Design

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 4/20

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Feb15f23f-a99f-406b-add4-eaffe0d1633d_2332x2696.png

3.1 Client Application

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 5/20

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Feb15f23f-a99f-406b-add4-eaffe0d1633d_2332x2696.png

The client application consists of the mobile, desktop, and web versions of Spotify
which provides a clean and intuitive UI to interact with the service.

It communicates with backend APIs for search, streaming, playlists, and
recommendations and supports offline listening by caching music on the device
(downloaded content).

The Load Balancer is the entry point for all client requests.

It distributes incoming client requests evenly across multiple instances of backend
services, preventing overload on any single server.

Receives incoming requests from load balancer and re-directs the request to the
appropriate service.

Streaming Service: Handles streaming of music from the storage system to use
device in real-time.

Search Service: Handles searching of songs, artists, albums and playlists.

Recommendations Service: Provides personalized music recommendations bas
on user behavior, such as listening history, likes, and playlist creation.

Ad Service: Handles the delivery of advertisements for free-tier users.

Users Service: Stores and manages user profiles, including personal informatio
subscription type, and preferences. Manages user playlist, allowing users to cre
modify and share them.

3.2 Load Balancers

3.3 App Servers

3.4 Services

3.5 Storage

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 6/20

Databases: Stores user profiles, playlists, songs metadata and search indices.

Blob Storage: A distributed storage system (e.g., AWS S3) for handling large-sca
storage of audio and ad files.

Content Delivery Network (CDN): Used to deliver large audio files efficiently t
users across the globe with minimal latency.

Caches: Caches frequently accessed data such as popular songs and
recommendations to improve performance and reduce the load on the storage a
database systems.

The Analytics and Monitoring service tracks user engagement, system performanc
and logs system health.

It generates alerts when issues are detected and logs all system activities for
troubleshooting.

Here are the key entities we need to store in our database:

Users, Songs, Artists, Albums, Playlists, Streams, Search Ind
and Recommendations.

Given the diverse types of data and high query demands, we use a combination of
relational databases, NoSQL databases, and distributed storage systems.

3.6 Analytics Service

4. Database Design

4.1 Relational Databases for Structured Data

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 7/20

To store highly structured data like user profiles, playlists, songs metadata, artists
and albums, we can use a relational databases like PostgreSQL or MySQL.

subscription_type: Plan type (Free, Premium, Family, etc.).

file_location: URL of the song file in storage (e.g., AWS S3).

duration: Length of the song in seconds.

To store unstructured and semi-structured data, we can use NoSQL databases like
MongoDB, Cassandra, or DynamoDB.

4.2 NoSQL Databases for Unstructured Data

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 8/20

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe4f90ed5-49f2-4e31-aec7-c5a1ee467be5_3506x2748.png

NoSQL databases provide flexibility and scalability, making them ideal for handling
highly dynamic data such as recommendations, and search indices.

Spotify generates recommendations for users based on their listening behavior and
this data is updated frequently.

Example Record:

Search indices are stored in NoSQL databases like Elasticsearch to allow quick, fuz
search queries across songs, artists, and albums.

These indices are continuously updated as new content is added.

Example Record:

Recommendations Table

Search Indices

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 9/20

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F11f5596e-2cda-430c-b215-b25df2c473fc_844x408.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fba369378-3787-4ac2-b7f8-ca14dd7c386f_730x406.png

To store large volumes of audio and ad files, we can use a distributed storage system
like AWS S3.

S3 ensures high durability and availability, making it an ideal storage solution for
serving large static files.

File:

https://s3.amazonaws.com/spotify/songs/blinding_lights.mp3

Metadata: File size: 4 MB, Bitrate: 128 kbps, Format: MP3

We use a Content Delivery Network (CDN) for distributing large audio files (songs)
users globally with minimal latency.

By serving music from CDN edge servers, Spotify ensures low-latency music
streaming experiences for users across the world, minimizing buffering times and

4.3 Distributed Storage System

Example Storage Object:

4.4 Content Delivery Network (CDN)

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 10/20

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fba369378-3787-4ac2-b7f8-ca14dd7c386f_730x406.png

reducing load on the central storage system.

Original music files are stored in a distributed storage system (e.g., AWS S3). The C
pulls from this origin storage when a song is requested for the first time and caches
for future requests.

Caching frequently accessed data like user preferences, popular songs, or
recommendations can improve performance.

A caching layer like Redis can be used to store this data temporarily.

Search Queries: Cache popular search queries to avoid hitting the search index
repeatedly.

Popular Songs: Frequently streamed songs can be cached to reduce database
queries.

User Preferences: Store the user's liked songs and playlists in the cache for fast
retrieval.

Example - SET/GET queries for User Preferences in cache:

4.5 Caching Layer

Examples of Cached Data:

SET user:preferences:12345 "{liked_songs: [1, 2, 3], playlists: [10, 11
12]}"

GET user:preferences:12345

4.6 Analytics and Monitoring Data (Data
Warehousing)

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 11/20

Analytics and monitoring data are critical for tracking user engagement, system
performance, and identifying potential issues.

Data is aggregated and processed in a data warehouse or distributed data stores (e.
Hadoop, BigQuery).

User Engagement: Data on streams, skips, and playlist additions are used to
generate insights into user behavior.

System Monitoring: Logs from various services are used to monitor system hea
detect anomalies, and perform performance tuning.

Royalty Calculations: Streaming data is used to calculate payments for artists
based on song plays and geographic reach.

Stream Log Example:

We'll design RESTful APIs that are intuitive, efficient, and scalable.

Key Use Cases for Analytics:

5. API Design

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 12/20

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Ff2f68190-831f-47cd-9e1f-8abfa53a9069_788x360.png

Let's break down our API design into several key endpoints:

The Search API allows users to search for songs, artists, albums, or playlists. The
search results are ranked based on relevance, popularity, and user preferences.

GET /search

Query Parameters:

query: The search term (e.g., "Blinding Lights").

type: The type of resource to search for (song, artist, album, playlist).

limit: Maximum number of results to return (default: 20).

offset: For pagination (default: 0).

Response:

5.1 Search API

Endpoints

{
 "results": [
 {
 "type": "song",
 "id": "12345",
 "title": "Blinding Lights",
 "artist": "The Weeknd",
 "album": "After Hours"
 },
 {
 "type": "artist",
 "id": "67890",
 "name": "The Weeknd"
 }

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 13/20

The Streaming API handles the delivery of music files from the backend or CDN to
the user’s device.

GET /stream/{song_id}

Response:

HTTP 302 Redirect to the CDN URL where the song is hosted:

The Recommendations API provides personalized song suggestions based on the
user’s listening history, preferences, and likes.

GET /recommendations/{user_id}

Query Parameters:

limit: Number of recommendations to return (default: 10).

Response:

]
}

5.2 Music Streaming API

Endpoints

{
 "url": "https://cdn.spotify.com/song/12345"
}

5.3 Recommendations API

Endpoints

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 14/20

For free-tier users, Spotify injects advertisements into their listening experience.

The Ad Delivery API fetches and serves personalized ads based on user preferences
and demographics.

GET /ads/{user_id}

Fetch ads for a user to be played during music streaming.

Response:

{
 "recommendations": [
 {
 "song_id": "12345",
 "title": "Blinding Lights",
 "artist": "The Weeknd",
 "score": 0.98
 },
 {
 "song_id": "67890",
 "title": "Can't Feel My Face",
 "artist": "The Weeknd",
 "score": 0.95
 }
]
}

5.4 Ad Delivery API

Endpoints

{
 "ad_id": "ad12345",
 "ad_url": "https://cdn.spotify.com/ads/ad12345.mp3",

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 15/20

The Streaming Service is at the heart of Spotify’s architecture, responsible for
delivering music content efficiently, securely, and reliably to millions of users in rea
time.

The actual delivery of music files is managed by a Content Delivery Networks
(Cloudflare, AWS CloudFront). This ensures that music is served from geographical
distributed servers close to the user, minimizing latency and bandwidth consumptio

1. Client sends a streaming request (e.g., /stream/{song_id}).

2. The App server authenticates the user and routes the request to the Streaming
Service.

3. If the song is not in the CDN, the Streaming Service retrieves the audio file’s
location (from the blob storage) and pushes the file to the nearest CDN edge
server. The CDN returns a URL to the streaming service to stream the audio.

4. The CDN URL is returned to the client, allowing the client to stream the audio

The recommendation system analyzes the user's listening habits, likes, and playlists
uses a combination of collaborative filtering (based on users with similar preference

 "duration": 30
}

6. Diving Deep into Key Components

6.1 Music Streaming Service

Request Workflow:

6.2 Recommendation Service

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 16/20

and content-based filtering (based on song metadata).

Collaborative filtering is one of the most commonly used techniques in
recommendation systems. This method leverages the behavior of users with similar
music tastes to generate recommendations.

User-Based Collaborative Filtering: This technique groups users based on thei
listening history. For example, if User A and User B both frequently listen to th
same set of artists and songs, the system may recommend songs that User A ha
listened to but User B hasn’t.

Item-Based Collaborative Filtering: In this technique, songs are recommended
based on their similarity to songs the user has previously liked. If many users w
like Song X also like Song Y, the system recommends Song Y to users who have
listened to Song X.

Content-based filtering focuses on the properties of songs, such as genre, artist,
album, tempo, and instrumentation, to recommend similar songs to users.

Song Attributes: Spotify collects metadata on each song, including genre, temp
mood, and instruments. This data is used to recommend songs with similar
attributes to what the user has already liked or listened to.

Artist Similarity: If a user listens to multiple songs from a particular artist, the
system may recommend songs from similar artists, based on shared attributes
(e.g., genre, style).

The Search Service in Spotify allows users to find songs, artists, albums, playlists, a
podcasts from a vast catalog efficiently.

Collaborative Filtering

Content-Based Filtering

6.3 Search Service

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 17/20

The architecture of Search Service can be broken down into the following key
components:

1. Query Parser: Interprets and normalizes the user’s search query.

2. Search Index: A dynamically updated index that contains metadata for all song
artists, albums, and playlists. A search engine like Elasticsearch or Apache Sol
can be used to build and manage this index.

3. Ranking Engine: Once the search index returns matching results, the Ranking
Engine sorts the results to ensure that the most relevant results appear at the to

4. Personalization Layer: Customizes search results based on the user’s listening
history, preferences, and demographic information.

5. Search Autocomplete: Provides users with suggestions as they type their queri
speeding up the search process.

6. Cache Layer: Caches frequently searched queries to improve performance and
reduce the load on the backend.

7. Search Index Updater: Ensures that the search index stays up to date with new
content being added to Spotify’s catalog.

Sharding: To scale the SQL databases and distribute the load evenly, implemen
sharding for large tables like user, playlist and song metadata.

Indexes: Add indexes on frequently accessed fields like user_id and playlist_id
improve query performance.

7. Addressing Key Issues and Bottleneck

7.1 Scalability

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 18/20

Partitioning: NoSQL databases can use partitioning strategies to distribute dat
across multiple nodes, ensuring low-latency access even at large scales.

TTL (Time to Live): Cached data is given a TTL to ensure that stale data is
regularly invalidated.

To ensure high availability, Spotify should implement fault-tolerant systems:

Replicated Databases: Replicate user, song and playlists data across multiple d
centers to prevent data loss.

Cache Replication: Redis can be configured to replicate cached data across
multiple instances for fault tolerance.

Auto-scaling: Automatically scale the number of servers based on traffic load.

Graceful Failover: If a server fails, traffic is rerouted to another server without
service interruption.

Monitoring and Alerting: Implement comprehensive monitoring and alerting
systems.

Spotify handles sensitive data such as user profiles and payment information.

Authentication: Use OAuth 2.0 for secure user authentication.

Encryption: Encrypt all sensitive data in transit and at rest.

Rate Limiting: Rate limit users to ensure that excessive API requests from a sin
client are throttled to protect the system.

Data Privacy: Implement strong access controls to ensure user data is not leake
or misused.

7.2 Reliability

7.3 Security

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 19/20

Thank you for reading!

I hope you have a lovely day!

See you soon,
Ashish

© 2025 Ashish Pratap Singh ∙ Privacy ∙ Terms ∙ Collection notice
Substack is the home for great culture

5/2/25, 1:16 PM Design Spotify - by Ashish Pratap Singh

https://blog.algomaster.io/p/15e25749-5569-4367-aec7-11da93ec1c7b 20/20

https://substack.com/privacy
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/

