
Design Uber - System Design Interview

FEB 27, 2025 ∙ PAID

7 Share

The concept of ride-hailing has transformed how we travel. Platforms like Uber, Ly
and Ola seamlessly connect riders with drivers through intuitive smartphone apps.

By simply entering a destination and tapping a button, users can summon a nearby
vehicle and monitor its arrival in real time.

However, building such a service at scale involves more than just connecting driver
and riders. Behind every “Request Ride” tap lies a sophisticated system coordinatin
real-time driver matching, efficiently finding nearby drivers, high-throughput dat
processing, dynamic pricing, and payment workflows.

In this article, we will explore how to design an Uber-like system that can handle
millions of rides every day.

ASHISH PRATAP SINGH

59

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 1/32

https://blog.algomaster.io/p/design-uber-system-design-interview/comments
javascript:void(0)
https://substack.com/@ashishps
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F7f3887c1-b01e-46e5-85a4-1bc5dd65676b_1200x675.jpeg

We’ll walk through every step of the design—from requirements and high-level
architecture to database and API design. Finally, we'll take a deep dive into core us
cases like how to efficiently find nearby drivers.

Before diving into the design, lets outline the functional and non-functional
requirements.

1. Ride requests: Riders should be able to input their pickup and destination
locations and request a ride.

2. ETA/Fare Estimation: The system should provide an estimated time of arrival
(ETA) and estimated fare to riders before they confirm the booking.

3. Driver-rider matching: The system should match riders with available drivers
who are in close proximity.

4. Accept/Decline: Drivers should be able to accept or decline incoming ride
requests.

5. Driver tracking: Once a rider is matched with a driver, the rider should be able
track the driver’s location and view the estimated time of arrival (ETA).

6. Ratings: Both riders and drivers should have the ability to rate each other after
ride is completed.

7. Payments: The user should be able to complete the payment after the ride is
completed.

1. Requirement Gathering

Functional Requirements:

Non-Functional Requirements:

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 2/32

1. Low latency: The system should provide real-time location updates and fast
driver-rider matching.

2. High availability: The system should be up 24/7 with minimal downtime.

3. Scalability: The system must handle peak loads (e.g., New Year’s Eve, sporting
events).

Total Users: 50 million riders, 5 million drivers

Daily Active Users (DAU): 10 million riders, 1 million drivers

Peak concurrent users: 1 million riders, ~100,000 drivers (assuming 10% of DAU
are active at peak hours)

Average Daily Ride Requests: 10 million globally

Peak rides per second (RPS): ~5,000

A driver sends a location update every 3 seconds while active.

Assuming 100,000 active drivers at peak time:

Location updates per second: 100,000 / 3 ≈ 33,333 updates/sec

Rider profile: ~2 KB per user (name, email, phone, payment method, preference

Driver profile: ~5 KB per driver (vehicle details, license, payment details, rating

2. Capacity Estimation

Assumptions

Location Updates

Data Storage Estimation

User & Driver Profiles

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 3/32

Total storage for 50M users: (50M × 2 KB) + (5M × 5 KB) = (100 + 25) GB = 125 G

Each ride stores:

Ride ID (UUID) → 16 bytes

Rider ID, Driver ID → 8 bytes each

Start & end location (lat/lon) → 16 bytes

Fare, pickup/dropoff time → 24 bytes

Status → 8 bytes

Total ride entry size: ~80 bytes

Total daily rides: 10M

Storage per day: 10M × 80 Bytes = 800 MB

Storage per year (365 days): ~300 GB

Each API call (ride request, driver update, fare estimation, etc.) contributes to netw
usage.

Ride requests per second: ~5,000 RPS

Driver location updates per second: ~33,333 RPS

Total peak API requests: ~40,000 RPS

Assuming an average API payload size of 5 KB, network bandwidth usage at peak:

40,000 RPS × 5 KB = 200 MB/sec

Ride Data

Network Bandwidth Estimation

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 4/32

Here’s a breakdown of the key components:

3. High-Level Design

1. Client Applications (Rider & Driver)

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 5/32

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F27a8ca99-a288-41b1-98bc-cd7ecdec889f_2322x2302.png

These are the primary user-facing interfaces for interacting with the system.

Riders can request rides, track drivers in real-time, make payments, and rate
drivers.

Drivers can accept or decline ride requests, update their availability, and
navigate routes.

The applications communicate with the backend via an API Gateway using
HTTPS REST or gRPC.

The API Gateway serves as the central entry point for all external requests.

It handles:

Request Routing: Receives requests from client applications and directs them t
the appropriate microservices.

Load Balancing: Distributes traffic across multiple instances of a service to
prevent overloading.

Security: Performs authentication (token validation) and authorization.

The system can be divided into three major service groups: User Management, Rid
Management, and Post-Ride Management.

Responsible for managing riders and drivers.

Rider Service:

Manages rider accounts (registration, login, and profile updates).

2. API Gateway / Load Balancer

3. Core Microservices

1. User Management

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 6/32

Stores user preferences (default payment methods, favorite locations).

Driver Service:

Tracks driver availability (online/offline status).

Maintains vehicle details (make, model, license plate).

Handles the end-to-end lifecycle of a ride, from request to completion.

Ride Service:

Manages ride creation and updates ride status (requested → driver assigned
in-progress → completed).

Coordinates with other services (Matching Service, Routing Service, Payme
Service).

Matching Service:

Finds the nearest available driver(s) for a ride request.

If a driver declines, it searches for the next best match.

Queries the Location Service or a geo-indexed datastore to fetch nearby
drivers.

Updates the Ride Service with the assigned driver.

Location Service:

Stores real-time driver locations in an in-memory datastore (e.g., Redis,
NoSQL with geospatial indexing).

Receives frequent location updates from drivers (every 3 seconds).

Supports driver tracking for riders and helps the Matching Service find the
closest drivers.

Routing Service:

2. Ride Management

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 7/32

Calculates optimal routes, estimated time of arrival (ETA), and turn-by-tu
directions.

Uses external map APIs (e.g., Google Maps, Mapbox) or an internally hoste
geospatial system.

Pricing Service:

Computes ride fares based on distance, time, and surge pricing.

Works with the Ride Service to provide real-time fare estimates and finaliz
the trip cost.

Handles payments and ratings after the ride is completed.

Payment Service:

Processes transactions and stores ride payment history in a SQL database.

Integrates with external payment providers (e.g., Stripe, PayPal) for credit
card or digital wallet transactions.

Rating Service:

Allows both riders and drivers to rate each other after a ride.

The system requires a combination of SQL (relational database) for structured
transactional data and NoSQL (document-based or key-value stores) for high-volum
real-time operations.

3. Post-Ride Management

4. Database Design

4.1 SQL Database (Transactional Data)

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 8/32

A relational database (e.g., PostgreSQL, MySQL) is used for structured, transactio
data that requires strong consistency. This includes user accounts, ride history,
payments, and ratings.

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 9/32

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fb62efbb1-d98e-49da-886e-03b23ca63cd9_3538x3784.png

A document-based NoSQL database (e.g., MongoDB, DynamoDB) is used for high
frequency, real-time data that doesn’t require strict consistency.

Stores frequent driver location updates for real-time operations.

Example Document:

Index:

driver_id: For quick lookup of a particular driver’s last known location.

Geospatial index on location to query by proximity (e.g., find drivers within
km of a rider).

A high-performance caching layer (e.g., Redis, Memcached) can be used to reduce
database load and improve response times.

We will discuss more approaches to support nearby driver queries in the deep dive
later.

4.2 NoSQL Database (High-volume, Real-time Data)

Driver Location Collection

{
 "driver_id": "d456",
 "location": {
 "latitude": 37.7749,
 "longitude": -122.4194
 },
 "timestamp": "2025-02-27T12:34:56Z"
}

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 10/32

Below is a RESTful API design that aligns with the microservices architecture
described earlier.

The APIs are grouped based on the microservice responsible for handling their logi
and data.

Public APIs: Exposed to client applications (rider and driver apps).

Internal APIs: Used for inter-service communication, not directly accessible by
clients.

Here we will only cover the APIs that are most relevant to this problem.

5. API Design

5.1 Driver Service (Public)

Update Driver Location

PUT /drivers/{driverId}/location
Authorization: Bearer <accessToken>
Content-Type: application/json

{
 "latitude": 37.7749,
 "longitude": -122.4194,
 "timestamp": "2025-02-27T12:34:56Z"
}

5.2 Ride Service (Public)

Request a Ride

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 11/32

Response:

POST /rides
Authorization: Bearer <accessToken>
Content-Type: application/json

{
 "riderId": "u123",
 "pickupLocation": {
 "latitude": 37.7749,
 "longitude": -122.4194
 },
 "dropoffLocation": {
 "latitude": 37.7849,
 "longitude": -122.4094
 }
}

Get Ride Details

GET /rides/{rideId}
Authorization: Bearer <accessToken>

{
 "rideId": "r789",
 "riderId": "u123",
 "driverId": "d456",
 "status": "DRIVER_ASSIGNED",
 "currentDriverLocation": { "latitude": 37.7760, "longitude": -122.418
},
 "estimatedArrivalTime": "3 minutes",
 "fare": {
 "estimate": 15.25,
 "final": null

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 12/32

Responsible for finding the nearest available driver. Often called by the Ride Servic

Response:

 }
}

5.3 Matching Service (Internal)

Find Nearest Driver

POST /match/nearest
Content-Type: application/json

{
 "rideId": "r789",
 "pickupLocation": {
 "latitude": 37.7749,
 "longitude": -122.4194
 }
}

{
 "driverId": "d456",
 "distance": 1.2,
 "eta": "5 minutes"
}

Assign Driver

POST /match/assign
Content-Type: application/json

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 13/32

Response:

Response:

{
 "rideId": "r789",
 "driverId": "d456"
}

{
 "rideId": "r789",
 "driverId": "d456",
 "status": "DRIVER_ASSIGNED"
}

5.4 Location Service (Public)

Receive Driver Location Update (High-frequency endpoint)

POST /location/driver
Content-Type: application/json

{
 "driverId": "d456",
 "latitude": 37.7749,
 "longitude": -122.4194,
 "timestamp": "2025-02-27T12:34:56Z"
}

Get Driver Location

GET /location/driver/{driverId}

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 14/32

Computes optimal routes and ETAs. Generally invoked by the Ride Service or
Matching Service.

Response:

{
 "driverId": "d456",
 "latitude": 37.7749,
 "longitude": -122.4194,
 "timestamp": "2025-02-27T12:34:56Z"
}

5.5 Routing Service (Internal)

Get Route & ETA

POST /routing/eta
Content-Type: application/json

{
 "startLocation": { "latitude": 37.7749, "longitude": -122.4194 },
 "endLocation": { "latitude": 37.7849, "longitude": -122.4094 }
}

{
 "distance": 2.5,
 "eta": "5 minutes",
 "directions": [
 "Head north on Market St",
 "Turn right on 5th St",
 "Continue until ...",
 "... (etc.)"

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 15/32

Calculates fare estimates, including surge pricing or dynamic pricing based on supp
demand.

Response:

]
}

5.6 Pricing Service (Internal)

Get Fare Estimate

POST /pricing/estimate
Content-Type: application/json

{
 "distance": 2.5,
 "timeInMinutes": 10,
 "surgeMultiplier": 1.5
}

{
 "baseFare": 10.00,
 "surgeMultiplier": 1.5,
 "estimatedFare": 15.00,
 "currency": "USD"
}

5.7 Rating Service (Public)

Submit Rating

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 16/32

Response:

1. Authentication & Security

Each API call should require a valid access token (e.g., JWT) in the

Authorization: Bearer <token> header.

2. Response Codes & Error Handling

POST /ratings
Authorization: Bearer <accessToken>
Content-Type: application/json

{
 "rideId": "r789",
 "ratingBy": "u123", // or "d456"
 "ratingFor": "d456", // or "u123"
 "score": 5,
 "comments": "Excellent ride!"
}

Get Ratings for a User

GET /ratings/user/{userId}
Authorization: Bearer <accessToken>

{
 "userId": "d456",
 "averageRating": 4.85,
 "totalRidesRated": 1200
}

API Considerations

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 17/32

Use standard HTTP status codes (e.g., 200 OK, 201 Created, 400 Bad
Request, 401 Unauthorized, 404 Not Found, 500 Internal Serv
Error).

Include error messages and error codes in JSON responses for clarity.

3. Pagination & Filtering

For queries like GET /rides (to list all rides for a user) or GET /ratings
implement pagination (page, limit) and possible filters (date ranges, ratin
thresholds).

4. Internal vs. External Endpoints

Many endpoints (Matching, Routing, Pricing) are typically internal
microservice APIs, not exposed directly to mobile/web clients.

The API Gateway ensures that only relevant endpoints (e.g., POST /rides
GET /rides/{id}, POST /payments) are accessible externally.

5. Rate Limiting: Public APIs are protected with rate limits to prevent abuse.

6. Event-Driven Triggers

Certain workflows (e.g., “ride completed” → “send rating request” or
“matching succeeded” → “notify ride service”) can be handled asynchronou
via a Message Queue (Kafka, RabbitMQ, etc.).

Lets dive into the core use cases that the system need to support.

6. Deep Dive into Core Use Cases

6.1 Booking a Ride

Rider Initiates a Ride Request

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 18/32

The rider opens the app, enters pickup and destination locations, and taps a
“Request Ride” button.

The request (including the rider’s ID and locations) is sent to the API Gateway
HTTPS.

The API Gateway authenticates the request (validates the rider’s JWT token, et
and forwards it to the Ride Service.

Creates a new ride record in the SQL database with status set to something lik

REQUESTED.

Calls the Pricing Service to get a fare estimate and calls the Routing Service to
get the ETA before finalizing the request.

Once the rider confirm the request, the Ride Service invokes the Matching
Service. It passes the ride’s pickup coordinates and other details (rider ID, ride
etc.).

Matching Service queries the Location Service (or a geo-enabled data store) to
find online drivers within a certain radius of the pickup location.

Sorts or ranks these drivers based on proximity, driver rating, or other business
logic (e.g., driver acceptance rate, predicted demand).

Selects the best candidate (closest and/or most suitable driver).

Sends a push notification to the selected driver’s mobile app, requesting
acceptance of the ride.

The driver sees ride details (pickup location, estimated fare) and can accept or
decline (within a time limit e.g., 30 seconds).

Ride Service Creates a New Ride

Matching Service Locates an Available Driver

Driver Accepts (or Declines) the Ride

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 19/32

If the driver accepts, the driver app notifies the Matching Service.

If the driver declines, the Matching Service selects the next available driver fro
its candidate list.

Upon driver acceptance, the Matching Service updates the Ride Service with th
assigned driver.

The Ride Service updates the ride record in the database to reflect the assigned

driver and new status (DRIVER_ASSIGNED).

The Ride Service notifies the rider (via an app push message) that a driver is
assigned.

The app displays the driver’s name, vehicle details, and real-time ETA (calculat
via the Routing Service).

Finding nearby drivers is a core use case in any ride-hailing system. It must be fast,
accurate, and scalable to handle millions of concurrent ride requests efficiently.

A basic approach is to store driver locations in a SQL database (e.g., MySQL,
PostgreSQL) and query nearby drivers using Haversine formula.

Schema Example (PostgreSQL):

Rider Receives Confirmation

6.2 Finding Nearby Drivers

1. Naïve Solution: Using a Relational Database (SQL)

CREATE TABLE drivers (
 driver_id VARCHAR(50) PRIMARY KEY,
 latitude DECIMAL(9,6),
 longitude DECIMAL(9,6),

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 20/32

Query: Finding Drivers within 5 km (Using Haversine Formula)

✅ Pros:

Easy to implement.

Works for small-scale applications.

❌ Cons:

Slow for large datasets (full table scan every time).

Not scalable for millions of requests.

No spatial indexing, leading to high latency.

PostGIS is a spatial database extension for PostgreSQL, allowing geospatial indexi

 status ENUM('available', 'busy')
);

SELECT driver_id, latitude, longitude,
 (6371 * acos(cos(radians(37.7749)) * cos(radians(latitude))
 * cos(radians(longitude) - radians(-122.4194))
 + sin(radians(37.7749)) * sin(radians(latitude)))) AS distance
FROM drivers
WHERE status = 'available'
HAVING distance <= 5
ORDER BY distance ASC
LIMIT 10;

2. Using Database Extensions like PostGIS

CREATE TABLE drivers (
 driver_id VARCHAR(50) PRIMARY KEY,

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 21/32

✅ Pros:

Faster than naive SQL due to geospatial indexing.

More accurate results than naive SQL.

❌ Cons:

Still not ideal for large-scale applications (queries slow down with millions of
users).

Indexes require frequent updates, which is expensive in real-time applications

Geohashing converts latitude & longitude into a string representation by dividing
the world into hierarchical grids. Nearby locations have similar geohashes, allowin
efficient lookups.

 location GEOGRAPHY(POINT, 4326),
 status ENUM('available', 'busy')
);

CREATE INDEX location_idx ON drivers USING GIST(location);

Query: Finding Nearby Drivers Using PostGIS

SELECT driver_id, ST_DistanceSphere(location, ST_MakePoint(-122.4194,
37.7749)) AS distance
FROM drivers
WHERE status = 'available'
AND ST_DWithin(location, ST_MakePoint(-122.4194, 37.7749)::GEOGRAPHY,
5000) -- 5 km radius
ORDER BY distance ASC
LIMIT 10;

3. Geohashing (Efficient Grid-Based Search)

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 22/32

How Geohashing Works:

1. The world is divided into a grid with cells of different sizes.

2. Each latitude/longitude pair is converted into a unique hash string (e.g.,

"9q9hv" for San Francisco).

3. To find nearby drivers, search for drivers in the same or adjacent geohash
regions.

Example: Storing Driver Locations in Redis (Key-Value Store)

Query: Finding Drivers in a 5 km Radius

✅ Pros:

Extremely fast lookups (O(log n) complexity).

Efficient for large-scale systems.

Easily scalable with distributed databases.

❌ Cons:

Geohashing regions are not circular (they are rectangular), leading to false
positives.

Handling edge cases (drivers near region boundaries require extra queries).

GEOADD drivers -122.4194 37.7749 "driver_123"

GEORADIUS drivers -122.4194 37.7749 5 km WITHDIST

4. Quadtree (Hierarchical Spatial Indexing)

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 23/32

A quadtree is a tree-based spatial data structure that recursively divides a 2D spac
into quadrants.

1. The map is recursively divided into four quadrants.

2. Each driver's location is stored in the smallest quadrant possible.

3. To find nearby drivers, search within relevant quadrants.

Example: Querying a Quadtree for Nearby Drivers

✅ Pros:

Efficient logarithmic search time (O(log n)).

Good spatial accuracy compared to geohashing.

How Quadtree Works

quadtree.find_nearby(lat=37.7749, lon=-122.4194, radius=5000)

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 24/32

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc724d440-c5f7-46a9-9554-0835cc70085f_1064x623.png

❌ Cons:

More complex to implement.

Insertion & deletion of drivers require rebalancing the quadtree.

Uber originally used Geohashing, but later switched to H3: Hexagonal Hierarchica
Spatial Index.

source: https://www.uber.com/en-IN/blog/h3/

H3 is an open-source geospatial indexing system developed by Uber.

It divides the world into hexagonal cells instead of squares (used in Geohashin

Each hexagon has better spatial coverage (less overlap, more uniform).

H3 supports hierarchical indexing, allowing efficient nearby searches.

Uniform coverage (less distortion than squares).

5. What Does Uber Actually Use?

What is H3?

Why Hexagons?

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 25/32

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5c198e17-2ae5-4186-990a-5c6d4d2e88aa_280x300.png

Efficient neighbor searches (hexagons naturally fit together).

Scales well for high-volume ride-hailing applications.

1. Convert each driver’s location into an H3 hexagon ID.

2. Store drivers in a distributed key-value store (e.g., Cassandra, Redis).

3. To find nearby drivers:

Retrieve drivers in the same hexagon as user.

Expand search one hexagon outward until enough drivers are found.

✅ Pros:

Highly scalable (used in production by Uber, Google, and others).

Fast nearest-neighbor lookups.

More accurate than Geohashing (hexagons cover space better).

Optimized for distributed storage.

❌ Cons:

Requires a dedicated infrastructure (custom storage solutions).

More complex than traditional geospatial databases.

How Uber Finds Nearby Drivers Using H3

import h3

hex_id = h3.geo_to_h3(37.7749, -122.4194, resolution=7)
nearby_hexes = h3.k_ring(hex_id, 1) # Find drivers in nearby hexes

6.3 Real-Time Tracking

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 26/32

Driver's app captures GPS coordinates (latitude & longitude) every 3 seconds.

The app sends location data to the Location Service via an API call.

The Location Service validates and stores the latest position in an in-memory
datastore (e.g., Redis, DynamoDB).

Since driver locations frequently change, we use a fast, ephemeral storage syst
like Redis with geospatial indexing.

There are two ways for the rider’s app to receive real-time updates:

Polling (API Calls Every Few Seconds)

Simple to implement

High network usage, increased server load

WebSockets (Push Updates)

Low latency and efficient

More complex implementation

Recommendation: Use WebSockets for real-time tracking while allowing polling a
fallback.

When a ride starts, the Rider app opens a WebSocket connection to receive live
location updates.

Rider app subscribes to driver’s location updates via WebSocket.

The Location Service sends live updates every 3 seconds.

The rider’s app renders the driver's position on the map dynamically.

Driver Location Updates

Rider Tracking the Driverʼs Location

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 27/32

ETA is calculated for two parts of the trip:

1. Pickup ETA: Time for the nearest available driver to reach the rider’s pickup
location.

2. Drop-off ETA: Time to travel from pickup to destination.

Query the Location Service (or a geospatial index) to get nearby active drivers.

The Matching Service may pre-filter drivers based on availability, ratings, and p
cancellations.

Use the Routing Service to compute the time for each nearby driver to reach th
rider.

Consider real-time traffic conditions when calculating time.

Select the driver with the shortest ETA (or apply business logic to prioritize).

The Routing Service computes the optimal route from pickup to drop-off
location.

Adjust travel time based on historical trip data and real-time traffic updates.

Periodically, the Ride Service may call the Routing Service to recalculate ETAs
based on traffic or route changes.

This updated ETA is then shown to the rider.

6.4 ETA Computation (Estimated Time of
Arrival)

Find the closest available drivers

Determine the estimated pickup time

Calculate the estimated drop-off time

ETA Recalculation

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 28/32

The Pricing Service calculates the estimated fare before booking confirmation. It
considers multiple factors.

A common ride fare formula follows this structure:

Total Fare = Base Fare + (Cost per km × Distance)+
(Cost per minute × Time) + Surge Multiplier + Tolls

Where:

Base Fare → Fixed charge to start a ride (e.g., $2.00).

Cost per km → Charge per unit distance traveled.

Cost per minute → Charge for time spent in traffic or waiting.

Surge Pricing → Additional multiplier when demand is high.

Tolls & Taxes → Additional charges based on location.

1. Retrieve distance and time from the Routing Service

Compute the trip’s estimated distance (km) and time (minutes).

2. Check for surge pricing

The Pricing Service checks real-time demand vs. supply.

If demand is high (e.g., rainy weather, peak hours), a surge multiplier (e.g.,
1.5x, 2x) is applied.

3. Apply pricing formula

Use the city-specific rate card for cost-per-km and cost-per-minute values.

Factor in tolls if applicable.

4. Return estimated fare

6.5 Fare Estimation

Steps for Fare Estimation

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 29/32

Provide a price range (e.g., $12 - $15) to account for traffic fluctuations.

When the ride status changes to COMPLETED (usually via the driver’s app), the
Ride Service updates the ride record in the SQL database.

The rider is notified via the app that the ride has ended and a payment will be
processed.

The Ride Service retrieves essential data points: distance traveled, time in tran
surge multiplier

The Ride Service calls the Pricing Service with updated metrics to calculate th
final fare.

The Ride Service sets fare in the ride record, ensuring the final fare is now
locked in for payment processing.

The Ride Service or an Event-Driven workflow (e.g., a message queue event
“RideCompleted”) triggers the Payment Service to handle the financial
transaction.

The Payment Service looks up the rider’s default payment method (credit card,
digital wallet, etc.) in the User Service or a secure vault.

If no valid payment method exists, the system may prompt the rider to update
payment information.

The Payment Service initiates a charge via an external payment gateway (e.g.,
Stripe, PayPal).

6.6 Handling Payments Post-Ride

Ride Completion

Final Fare Calculation

Payment Authorization & Processing

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 30/32

The payment gateway processes the charge asynchronously. Once the payment
successful (or fails), it triggers a webhook event to notify Payment Service.

Payment Service updates the Payment Status in the database (PENDING →
SUCCESS/FAILED).

Thank you for reading!

If you found it valuable, hit a like ❤ and if you have any questions or suggestions,
leave a comment.

I hope you have a lovely day!

See you soon,

Ashish

59 Likes ∙ 7 Restacks

Discussion about this post

Previous Next

Write a comment...

Comments Restacks

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 31/32

https://substack.com/note/p-157989156/restacks?utm_source=substack&utm_content=facepile-restacks

© 2025 Ashish Pratap Singh ∙ Privacy ∙ Terms ∙ Collection notice
Substack is the home for great culture

5/3/25, 4:59 PM Design Uber - System Design Interview

https://blog.algomaster.io/p/design-uber-system-design-interview 32/32

https://substack.com/privacy
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/

