
Design WhatsApp

MAY 01, 2025 ∙ PAID

Share

Nearly everyone uses a chat application to send messages and stay connected.

With over 2.5 billion active users and more than 100 billion messages exchanged
daily, WhatsApp is the world’s most popular messaging app.

But what does it take to build such a platform that can connect billions of people in
real-time across the globe?

In this article, we will dive into high-level design of building such a scalable chat
application.

Before diving into the design, lets outline the functional and non-functional
requirements.

Support 1:1 real-time messaging between users.

Show online/offline status and last seen time of users.

Show message delivery status (sent, delivered, read)

Allow users to share images, videos, and audio clips.

ASHISH PRATAP SINGH

1. Requirement Gathering

1.1 Functional Requirements

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 1/19

https://blog.algomaster.io/publish/post/157750356
javascript:void(0)
https://substack.com/@ashishps


Support group conversations with up to 100 members.

Send Push notifications for new messages if the receiver is offline.

Store and retrieve chat history for each user.

Scalability: Handle millions of concurrent users.

High Availability: Ensure minimal downtime and resilience to server failures.

Low Latency: Deliver messages in real-time with minimal delay.

Reliability: Ensure messages are not lost.

Let’s assume the following traffic characteristics for our chat application:

Total Users: Assume 1 billion registered users.

Daily Active Users (DAU): Around 500 million users actively use the app each da

Peak Concurrent Connections: Approximately 50 million users connected at pea
times.

Average Messages per Day: If each active user sends an average of 10 messages dail
this results in 5 billion messages per day.

Assuming each message is around 1 KB.

Daily Storage: 1 KB × 5 Billion messages = 5  TB

1.2 Non-Functional Requirements

2. Capacity Estimation

Storage Requirements (for Messages):

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 2/19



Annual Storage: 365 × 5  TB ≈ 1.8 PB (Petabytes)

With 10 million users connected concurrently during peak times.

Average Bandwidth per Connection: Assuming an average of 10 KB/s per
connection, we would need a total of 100 GB/s of bandwidth to support real-tim
messaging at peak usage.

Visualized using Multiplayer

Bandwidth Estimation (for Real-Time Communication):

3. High-Level Design

Chat Servers

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 3/19

https://dub.sh/nmI4K2G
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F02013ca3-016b-43e9-93b7-e078f20a692a_1619x1024.png


The Chat Servers manage a large number of concurrent connections, facilitate real-
time communication, and ensure that messages are delivered efficiently between us
with minimal latency.

To support seamless two-way messaging, a protocol like WebSockets—designed fo
native bidirectional communication between clients and servers—is ideal. (We'll de
into this in more detail later.)

The load balancer efficiently distributes incoming traffic from users across multipl
instances of chat servers and user-facing services, such as the media service.

Here’s how the connection is established between the user and chat servers via the
load balancer:

Initial Connection: The client initiates an HTTP(S) request to set up a WebSoc
connection. This request passes through the load balancer, which routes it to an
appropriate chat server based on factors like user’s location and the load-
balancing algorithm in use (e.g., round-robin, least connections).

Connection Upgrade: Once the request reaches the selected server, the
connection is upgraded from HTTP to WebSocket, establishing a persistent,
bidirectional WebSocket link between the client and the selected chat server vi
the load balancer.

Session Persistence: To ensure that the client remains connected to the same c
server, load balancer uses sticky sessions. This can be achieved through IP
hashing, where the load balancer consistently routes the user to the same serve
based on the hash of their IP address.

Load Balancer

Alternative with Service Discovery

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 4/19

https://blog.algomaster.io/p/websockets


An alternative approach is to use service discovery, which enables users to connect
directly to chat servers.

In this case, users first connect to the service discovery layer to identify the chat ser
they should connect to and then establish a WebSocket connection directly with tha
server.

The User Connection Cache is a fast, in-memory cache (e.g., Redis) that stores each
user's active connection details, such as the chat server they’re connected to and the

last_active timestamp.

Clients periodically send heartbeat signals to their connected server, and each

heartbeat updates the user’s last_active timestamp in the cache.

This setup enables efficient support for online/offline status and last seen
functionality.

If the difference between the current time and the last_active timestamp is wit
a defined threshold (e.g., 3 seconds), the user is shown as online; otherwise, they are

User Connection Cache

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 5/19

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F28edee9e-289f-46ff-a2da-322a5f050df1_1248x608.png


marked as offline.

The Notification Service is responsible for delivering real-time notifications to use
especially when they are offline or not actively using the application.

When a user is offline, the chat server forwards the message to the Notification
Service.

To enhance efficiency, the chat server can send this message to a message queue rat
than directly interacting with the Notification Service and waiting for a response.

The Notification service integrates with external push notification providers like
Firebase Cloud Messaging (FCM) and Apple Push Notification Service (APNS) to
deliver messages as push notifications to offline users.

The Message Queue is a distributed, high-throughput queue (e.g., Kafka, RabbitMQ
that temporarily stores messages before they are consumed by the Message Storage
Service.

By acting as an intermediary, the Message Queue decouples message storage from
real-time message handling on chat servers, reducing latency and enhancing the
scalability of the application.

The Message Storage Service is responsible for the reliable storage, fast retrieval, a
efficient archival of chat messages.

It consumes incoming messages from the Message Queue and persists them in the
Message DB for efficient storage and retrieval.

Notification Service

Message Queue

Message Storage Service

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 6/19

https://blog.algomaster.io/p/design-a-scalable-notification-service
https://blog.algomaster.io/p/message-queues


The Message DB stores all chat messages in a reliable and efficient manner, ensurin
users can access past messages.

This database is designed for high-write throughput and efficient retrieval (e.g.,
Cassandra) to handle the large volume of messages in real-time chat applications.

The Group Service is responsible for handling all group-related functionalities,
including creating groups, updating group details and managing group membership

When a message needs to be delivered to a group conversation, the Chat Servers qu
the Group Service to retrieve the current list of group members.

The Group DB stores and retrieves all data associated with group chats, including
group IDs, member lists, admin roles, and group setting.

The Media Service handles the uploading and management of multimedia content,
such as images, videos, and audio files.

It securely stores media files in a blob storage system, while maintaining metadata—
such as file type, size, and upload timestamps—in a separate database for easy acce
and organization.

By offloading media storage from the main chat servers, the Media Service reduces
bandwidth usage on the chat servers and enhances overall app performance.

Message DB

Group Service

Group DB

Media Service

Blob Store

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 7/19



The Blob Store is the storage backend for a chat application’s multimedia content,
including images, videos, audio files, and documents.

It’s designed to handle large volumes of media content while ensuring fast, secure, a
reliable access.

The Media Store typically leverages cloud-based object storage solutions (such as
Amazon S3, Google Cloud Storage, or Azure Blob Storage) that provide high durabi
scalability, and cost-effectiveness.

To reduce latency when uploading or downloading multimedia content, files are
distributed to locations geographically closer to users via a Content Delivery Netwo
(CDN).

When a user shares a multimedia file, the client application uploads it directly to th
CDN, storing it in a location close to the recipient.

Instead of sending the file itself, the client sends the file’s URL to the chat server as
part of the message, allowing other users to download and access the content quick
and efficiently from the nearest CDN location.

Once files are uploaded to the CDN, the Media Service retrieves them and stores th
in a blob store for long-term storage.

This approach reduces the load on chat servers, minimizes latency, and significantly
improves media delivery speed for users.

CDN

4. Database Design

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 8/19



For a chat application, the database needs to handle core entities like users, messag
and groups.

Here’s a breakdown of a database design that could support a scalable and efficient
chat application.

To store the user, group and conversations data, we can use a SQL database like
PostgreSQL.

For message data, it’s preferred to use a NoSQL database like Cassandra due to high
write throughput.

For media files, an object store like AWS S3 provides scalable and secure storage.

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 9/19

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F37329a85-ad91-40c6-830c-c1fd5175d40d_3744x2748.png


To understand why WebSockets are ideal for real-time messaging, let’s examine oth
potential solutions and their limitations:

In polling, the client periodically sends HTTP requests to the server to check for ne
messages.

Drawbacks: Polling can be resource-intensive, especially with high polling frequen
Since the server responds with "no new messages" most times, this approach can ad
substantial overhead and waste server resources.

In long polling, the client holds an open connection with the server until a new
message is available or a timeout occurs. When the server has new data, it responds
and the client immediately re-establishes the connection, restarting the process.

While this reduces the need for repeated requests as in standard polling, long pollin
has several limitations:

Connection Overhead: Each message exchange requires re-establishing the
connection, creating significant overhead and putting a heavy load on servers a
network resources.

Resource Consumption: The server must maintain many open connections,
consuming memory and capacity even without active data exchange.

5. Deep Dive into Key Components

5.1 Why Choose WebSockets over HTTP?

Polling

Long Polling

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 10/19



Latency Issues: If the timeout is long, messages may be delayed. If short, freque
resets add the same overhead as standard polling.

Overall, long polling’s connection and resource demands make it less suited for real
time chat applications.

WebSockets on the other hand eliminate the need for repeated HTTP handshakes,
headers, and responses, reducing overhead and enhancing performance.

The client and server establish a connection once, and this connection stays open fo
the entire chat session, enabling seamless data transfer.

Visualized using Multiplayer

This persistent connection makes WebSocket ideal for real-time communication,
where both the client and server need to exchange data frequently and in a timely
manner.

WebSockets

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 11/19

https://dub.sh/nmI4K2G
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F19a77b62-831f-4078-b8e8-326313be302f_467x361.png


When a user opens the chat app, it initiates a WebSocket connection with one of th
chat servers. This persistent connection remains open throughout the chat session,
enabling real-time communication between the client and server without requiring
repeated HTTP requests.

Visualized using Multiplayer

Once connected, when User A sends a message to User B, the message travels throu
User A’s WebSocket connection to the server managing that connection (Server A).

5.2 Real-time Message Delivery

Establishing the Connection

Sending Messages

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 12/19

https://dub.sh/nmI4K2G
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F9351cb50-0bde-4beb-b35c-a283fa5c2879_775x724.png


Server A then looks up the user connection cache to determine whether User B is
online and, if so, which server currently holds User B's connection.

If User B is online: Server A forwards the message to Server B, which delivers i
User B via their open WebSocket connection.

If User B is offline: Server A sends the message to the notification service, whi
triggers a push notification to notify User B of the new message.

WebSockets enable real-time status updates for messages (e.g., “message sent,”
“message delivered,” “message read”), providing users with instant feedback on
message states.

When User A sends a message, it is transmitted over their WebSocket connection t
the server handling their connection (Server A).

1. Server A receives the message, pushes it to the message queue for storage, and
sends an acknowledgment back to User A.

2. Upon receiving this acknowledgment, User A’s app updates the message status
“sent.”

If User A is offline when attempting to send a message, the message won’t be sent
until they are back online. The message remains in a pending state on User A's dev
until it reconnects and successfully sends the message to Server A.

Once the User B receives the message, it sends an acknowledgment to Server B.

Server B sends a delivery acknowledgment to Server A.

5.3 Message Delivery Indicators

Message Sent

Message Delivered

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 13/19



Server A sends the message status “delivered” to the message queue for
permanent storage and then relays this update to User A’s app, which reflects t
message as “delivered.”

If User B is offline, Server A will not receive an acknowledgment of delivery from
Server B, so the message remains in the “sent” state for User A until User B
reconnects.

When User B comes online, the client app sends the updates to Server B, at which
point it sends a “delivered” acknowledgment to Server A. User A’s app is then upda
to reflect the “delivered” status.

When User B opens the chat window and views the message, their app sends a “rea
acknowledgment to Server B.

1. Server B logs this event in the message queue and forwards the “read” status to
Server A.

2. Server A pushes this update to User A’s device, allowing User A’s app to display
the message as “read.”

If User B is offline, they cannot view the message, so it will not trigger a “read” stat
When User B reconnects and opens the chat, their app will send a “read”
acknowledgment to Server B.

The Server B logs the “read” status in the message queue and forwards it to Server A
User A’s app then receives this update, marking the message as “read.”

Message Read

5.4 Group Messages

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 14/19

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0f00cb1e-0dde-4771-b5d2-c1df50c4165e_1205x962.png


Visualized using Multiplayer

1. When User A sends a message in a group chat, the message travels through Us
A’s WebSocket connection to the server managing that connection (Server A).

2. Server A queries the Group Service to retrieve a list of all active members in th
group.

3. Server A checks the user connection cache to determine which group member
are currently online and the specific servers they are connected to.

4. For Each Online Member:

If a member is connected to Server A, it delivers the message directly over t
existing WebSocket connection.

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 15/19

https://dub.sh/nmI4K2G
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0f00cb1e-0dde-4771-b5d2-c1df50c4165e_1205x962.png


If a member is connected to a different server (e.g., Server B), Server A
forwards the message to Server B, which then delivers the message to the u
over their WebSocket connection.

5. For offline group members, Server A sends the message to the Notification
Service. The Notification Service triggers push notifications for each offline gr
member, alerting them of the new message.

In a group chat, every message sent must be distributed (or "fanned out") to each
group member.

As group size increases, so does the fan-out workload. For instance, in a group of 50
members, each message requires 500 individual message deliveries, which can quick
overwhelm the server.

That’s why, most chat applications put limits on the number of members a group ca
have (WhatsApp currently has 1024).

To ensure that all group members can access the message history, Server A pushes t
message to the Message Queue for storage.

The Message Storage Service consumes the message from the queue and stores it in
the Message DB, where it will be available for group members to retrieve later.

As each online group member receives the message, their respective server sen
delivery acknowledgments to Server A (or directly updates the status in the
Message DB if needed).

Once users open and view the message, read acknowledgments are similarly
propagated back to Server A and stored for future reference, allowing User A to
see which group members have received and read the message.

Message Persistence:

Acknowledgments and Status Updates

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 16/19



To retrieve recent messages efficiently, we can use a time-based message ID.

A time-based message ID typically combines a timestamp with a unique identifier f
each message.

This allows us to order messages by timestamp, retrieve messages within a specific
time range and support pagination (“load more“) where you retrieve messages befor
or after a specific timestamp without re-sorting the dataset.

A common format might include:

Timestamp (in milliseconds): The first part of the ID is the timestamp at which
the message is created. This allows messages to be sorted chronologically by th
creation time.

Unique Sequence or Randomized Component: Appending a unique componen
(like a random or incremental sequence) ensures each message ID is unique, ev
if multiple messages are sent at the same millisecond.

For instance, a message sent at 2024-11-05 12:34:56.789 with a sequence 001
could have an ID: 20241105123456789001.

5.5 How to generate Message ID?

[Timestamp in milliseconds][Unique Sequence/Random Component]

6. Address Key Issues and Bottlenecks

6.1 Chat Server Failure

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 17/19



In the event of a chat server failure, all clients connected to that server will lose the
connection.

To recover, clients automatically attempt to reconnect, this time establishing a new
connection with a different available server.

The load balancer continuously monitors the health of each chat server through
regular health checks.

If a server goes down, the load balancer immediately stops directing traffic to it,
ensuring new connections are routed to healthy servers only.

To support horizontal scaling and efficient data access, we can implement sharding
across different data types:

1. User Data Sharding: Shard user data based on user_id. This will allow us to
distribute user records across multiple servers and enable us to scale as the use
base grows.

2. Message Data Partitioning: Partition messages based on message_id, using a

timestamp-based message_id to enable efficient time-based searches. This
structure allows recent messages to be accessed quickly and older messages to 
located based on timestamp.

With large volumes of messages and multimedia content, optimizing storage costs i
essential.

Here are some effective strategies:

6.2 Sharding

6.3 Optimizing Storage Cost

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 18/19



1. Compress Multimedia Files: Compressing large files (e.g., images, videos) can
reduce storage requirements and cuts costs significantly.

2. Archive Older Messages: Most users only access recent messages, which can b
cached locally on their devices. Older messages can be moved to lower-cost, co
storage (e.g., Amazon Glacier), reducing expenses while still allowing access if
needed.

3. Deduplicate Files: Avoid storing multiple copies of identical files by
implementing deduplication, which can save significant space when the same
media is shared across multiple users or groups.

4. Efficient Metadata Storage: Store metadata (e.g., file type, size, timestamps)
separately from the media itself to reduce the load on primary storage and mak
searches faster and more efficient.

Thank you for reading!

I hope you have a lovely day!

See you soon,
Ashish

© 2025 Ashish Pratap Singh ∙ Privacy ∙ Terms ∙ Collection notice
Substack is the home for great culture

5/1/25, 4:47 PM Design WhatsApp - by Ashish Pratap Singh

https://blog.algomaster.io/p/97768905-4e7d-4e72-adfa-af6e79d75101 19/19

https://substack.com/privacy
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/

