
Design YouTube - System Design Interview

JAN 30, 2025 ∙ PAID

2 3 Share

With over 2.5 billion monthly active users, YouTube is the second most visited
website in the world—trailing only Google.

As a video-sharing platform, it enables users to upload, watch, and interact with vi
content, while handling hundreds of millions of daily visitors, managing petabytes o
data, and ensuring real-time video delivery across the globe.

In this article, we’ll explore the system design of a large-scale video streaming serv
like YouTube that can accommodate hundreds of millions of daily users and billion
of views, all while maintaining low latency and high availability.

We’ll walk through every step of the design—from requirements and high-level
architecture to database and API design—before diving deep into core use cases.

The concepts covered here are equally applicable to other large-scale video platform
such as Netflix and Prime Video.

ASHISH PRATAP SINGH

108

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 1/29

https://blog.algomaster.io/p/design-youtube-system-design-interview/comments
javascript:void(0)
https://substack.com/@ashishps
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fdd6ebc95-a2e6-48f1-b19c-2006706fef63_310x163.png

Before diving into the design, lets outline the functional and non-functional
requirements.

Users should be able to upload video files.

Uploaded videos must be transcoded into multiple resolutions (e.g., 240p, 360p
720p, 1080p) to support different network conditions and devices.

Users should be able to stream videos in real-time with adaptive bitrate
streaming to adjust quality based on network conditions.

Users can search for videos by title, tags, or description.

Users can like and comment on videos.

Users should be able to create and subscribe to channels.

1. Scalability: The system should support millions of concurrent users and
thousands of video uploads per minute.

2. High Availability: Core features like video upload, playback, and search should
have minimal downtime.

3. Low Latency: Fast video streaming with minimal buffering and near-
instantaneous search results.

4. Durability: Video files must be stored reliably, with redundancy mechanisms to
prevent data loss due to hardware failures.

5. Cost Efficiency: Optimize storage and bandwidth costs.

1. Requirements Gathering

Functional Requirements

Non-Functional Requirements:

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 2/29

Daily Active Users (DAU): 10 million

Upload Rate: ~100,000 videos/day

Average Videos Watched per User per Day: 5 videos

Average Video Size: 500 MB.

Metadata Size per Video: 1 KB.

Daily Storage for Videos: 100,000 videos / day * 500 MB / video = 50 TB / day

Daily Video Metadata Storage: 100,000 * 1KB = 100MB / day

Daily Video Consumption: 10 million users × 5 videos/user = 50 million views/d

Daily Bandwidth Requirements (without compression & caching) : 50 million
views * 500 MB / day = 25 PB / day

Given the high storage and bandwidth requirements, leveraging cloud-based servic
is the most practical approach:

1. Content Delivery Network (CDN): To cache frequently accessed videos closer t
users and reduce latency.

2. Blob Storage (e.g., AWS S3): To store video files reliably with redundancy.

2. Capacity Estimation
Assumptions:

Storage Estimation:

Network Bandwidth Estimation:

3. High Level Design

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 3/29

We can break the architecture of YouTube into two primary components:

Video Streaming – Handles video playback, and delivery.

Video Upload & Processing – Manages user uploads, transcoding, and metadat
storage.

Users interact with the platform via web browsers, mobile apps, and smart TV
applications.

3.1 Video Streaming Architecture

Components:

Clients (Web, Mobile, Smart TVs)

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 4/29

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F23342c70-b11d-48c3-b30b-63ea245e5d2a_2026x1322.png

The client applications handle video playback, user interactions (likes, commen
subscriptions), and UI rendering.

They communicate with backend services through an API Gateway or Load
Balancer.

Acts as the single entry point for all client requests.

Distributes incoming traffic across multiple service instances to ensure high
availability and scalability.

Enforces rate limiting, authentication, and authorization before forwarding
requests to downstream services.

Stores and manages video metadata (e.g., title, description, tags, owner ID, uplo
timestamp).

Exposes APIs for querying and updating video details.

Typically backed by a relational database (PostgreSQL/MySQL) for structured
metadata storage and a caching layer (e.g., Redis) to support fast retrieval of
frequently queried videos.

Caches and serves video segments from geographically distributed edge nodes.

Reduces latency and offloads bandwidth from the origin storage by bringing
content closer to users.

1. The user clicks on a video thumbnail or opens a video page.

Load Balancer / API Gateway

Video Metadata Service

Content Delivery Network (CDN)

Video Streaming Workflow:

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 5/29

2. The client app (on web, mobile or TV) sends a request to the Video Metadata
Service (via the API Gateway or Load Balancer) to fetch:

Video metadata (title, description, thumbnail, channel info)

A streaming manifest URL (e.g., HLS .m3u8 or DASH .mpd file), which
contains links to video segments stored in CDN.

3. The video player (e.g., HTML5 player, Android/iOS native player, Smart TV app
downloads the manifest file.

4. This manifest file contains references to video segments in multiple resolution
and bitrates, allowing adaptive streaming based on the user’s internet speed.

5. The CDN, which maintains copies of the video stored at various locations
worldwide, serves the video content. The edge server closest to the user handle
the request, ensuring low latency and optimized bandwidth usage.

6. The video begins playing immediately, with the player continuously fetching sm
video chunks (segments) from the CDN edge server.

7. If a requested segment is not found in the CDN cache, it is:

a. Fetched from the origin storage.

b. Cached for future requests.

c. Delivered to the user in real-time.

3.2 Video Upload & Processing Architecture

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 6/29

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F6a945dec-c26d-4cef-b134-42bf60ff9887_2728x1942.png

Handles video uploads from users, often using multi-part uploads for large file

Generates a pre-signed URL for direct upload to Object Storage (e.g., AWS S3)
from the user’s device.

Creates a new entry in the video metadata database when upload is initiated.

Sends a transcoding job to a Message Queue after a successful upload.

Components:

Video Upload Service

Video Transcoding Service

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 7/29

https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F6a945dec-c26d-4cef-b134-42bf60ff9887_2728x1942.png

Reads raw video files from Blob Storage and encodes it into multiple
resolutions/bitrates (e.g., 240p, 480p, 720p, 1080p) for adaptive streaming.

Generates thumbnails and extracts metadata (e.g., duration, codec).

Stores transcoded video segments in Object Storage or CDN-backed storage fo
efficient delivery.

Decouples video upload from transcoding to ensure scalability.

Stores job requests from the Upload Service and allows the Transcoding Servic
to process them asynchronously.

Raw Video Storage – Stores unprocessed uploads in a blob store before
transcoding.

Processed Video Storage – Stores transcoded video segments in a CDN-backed
system.

Metadata Storage – Stores structured video metadata in a relational database.

A logged-in content creator selects a video file via a frontend client (web, mobi
or smart TV interface).

The client sends an upload request to the Video Upload Service via the API
Gateway.

Includes metadata such as channel_id, title, description, tags, an
other relevant fields.

Message Queue

Storage

Video Upload workflow:

1. Initiating the Upload

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 8/29

The server generates a pre-signed URL for an Object Storage bucket (e.g., AWS
S3).

The client uploads the video directly to Object Storage using the pre-signed U

Large files often use multi-part or chunked uploads. The client splits a large fi
into smaller “parts” (chunks), each typically ranging from a few MBs to tens of
MBs.

If the connection drops in the middle of the upload, only the incomplete
chunk needs to be re-sent rather than re-uploading the entire file from
scratch.

In many multi-part implementations, each chunk can be uploaded
concurrently using multiple threads or connections.

Once the upload call is initiated, the Upload Service creates a new record in th
Videos table with:

video_id (primary key)

channel_id (which user or channel this belongs to)

title, description, tags

status = "processing" (since it’s not yet ready for viewing)

upload_date = now()

The Videos table record includes a reference or URL to the uploaded file in

Object Storage, e.g., raw_file_url: <https://bucket/raw/12345.mp4

The Upload Service returns a response to the client with the newly created

video_id.

2. Upload to Object Storage

3. Metadata Creation & Status Update

4. Sending a Transcoding Job

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 9/29

https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html

The Upload Service places a message on a queue (e.g., RabbitMQ, AWS SQS,
Kafka) containing:

video_id

raw_file_url

target_resolutions

target_formats

A Transcoding Service worker polls the queue, retrieves the message, and

extracts: raw_file_url, video_id, target_resolutions and

target_formats.

The worker downloads the raw file from the Object Storage (raw files bucket).

The worker uses video processing tools (e.g., FFmpeg) to create adaptive bitrat
variants:

Low resolution (240p or 360p) - For slow connections.

Standard resolution (480p or 720p) - For average connections.

High resolution (1080p or 4K) - For high-bandwidth users.

Each variant is split into small segments (e.g., 2-10 seconds long) for adaptive
streaming.

The worker writes the final video segments and streaming manifests to a
“transcoded” bucket in Object Storage or a CDN-backed storage path, e.g.:

https://cdn.provider.com/videos/11111/720p/....

Video Transcoding Workflow:

1. Processing the Job

2. Video Transcoding Process

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 10/29

The worker may also generate a thumbnail at this stage (capturing a frame at X
seconds into the video).

Once transcoding finishes successfully, the Transcoding Service calls an intern

API (e.g., PUT /videos/{video_id}/status) on the Metadata Service.

The Videos metadata table record is updated:

status = "live” (video is now available for streaming).

transcoded_url fields updated with resolution-based URLs.

thumbnail_url updated.

If transcoding fails, the worker marks status = "failed", optionally storing an er
message.

Once the transcoded files are in object storage or an origin server, the CDN
automatically caches content at edge locations to serve playback requests.

Future playback requests are served from CDN edge nodes, reducing origin
bandwidth usage and improving streaming performance.

A large-scale video platform like YouTube requires handling both structured data
(e.g., user accounts, video metadata, subscriptions) and unstructured/semistructure
data (e.g., video files, search indexes, logs).

Typically, you’ll combine multiple database solutions to handle different workloads

1. Relational Databases (SQL) for user profiles, channel data, and video metadata

3. Status Update & Database Sync

4. Database Design

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 11/29

2. NoSQL / Key-Value Stores for high-volume event logs (e.g., watch history) or
caching frequently accessed data.

3. Search Indexes for keyword-based searches (title, tags, description).

4. Object Storage for the actual video files and thumbnail images.

Given the structured nature of user profiles, video metadata, subscriptions, and
relationships, a relational database (like PostgreSQL or MySQL) is often well-suited

4.1 Relational Tables

Schema:

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 12/29

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fdbf00fdd-6d11-45b0-94e6-e05460798671_3506x3656.png

Users Table: Stores user account details.

Channels Table: Each user can have one or more channels.

Videos Metadata Table: Stores video metadata, but not the actual video files.

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 13/29

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fdbf00fdd-6d11-45b0-94e6-e05460798671_3506x3656.png

Comments Table: Stores video comments.

Subscriptions Table: Tracks user subscriptions to channels.

For fast video searches, we can store video metadata in Elasticsearch.

Example Record:

Below is a RESTful API design covering some of the core use cases.

Example resolution_urls JSON format:

{
 "240p": "https://cdn.provider.com/videos/12345/240p.m3u8",
 "480p": "https://cdn.provider.com/videos/12345/480p.m3u8",
 "720p": "https://cdn.provider.com/videos/12345/720p.m3u8",
 "1080p": "https://cdn.provider.com/videos/12345/1080p.m3u8"
}

4.2 Search Indexes

{
 "video_id": 12345,
 "title": "Learn System Design",
 "description": "This is an in-depth guide...",
 "tags": ["system design", "architecture", "scalability"],
 "views": 500000,
 "upload_date": "2025-01-30T10:15:00Z"
}

5. API Design

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 14/29

Request (JSON or multipart/form-data):

Response:

Response:

5.1 Video Upload & Processing APIs

Initiate Video Upload

POST /videos/upload
Authorization: Bearer jwt_token

{
 "channel_id": 45678,
 "title": "How to Learn System Design",
 "description": "A complete guide to mastering system design",
 "tags": ["system design", "architecture", "scalability"]
}

{
 "video_id": 456,
 "status": "processing",
 "upload_url": "https://s3.example.com/upload/456.mp4"
}

Complete Upload & Start Processing

POST /videos/{video_id}/process
Authorization: Bearer jwt_token

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 15/29

Response:

{
 "message": "Video processing started."
}

5.2 Video Metadata & Streaming APIs

Get Video Details

GET /videos/{video_id}

{
 "video_id": 456,
 "title": "How to Learn System Design",
 "description": "A complete guide to mastering system design",
 "category": "Education",
 "tags": ["system design", "architecture", "scalability"],
 "views_count": 150000,
 "likes_count": 1200,
 "comments_count": 300,
 "upload_date": "2025-01-30T10:15:00Z",
 "status": "live",
 "thumbnail_url": "https://cdn.example.com/thumbnails/456.jpg",
 "resolution_urls": {
 "240p": "https://cdn.example.com/videos/456/240p.m3u8",
 "480p": "https://cdn.example.com/videos/456/480p.m3u8",
 "720p": "https://cdn.example.com/videos/456/720p.m3u8"
 }
}

Stream Video (HLS/DASH)

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 16/29

Response:

Redirects to the CDN URL for HLS/DASH manifest file.

Response:

GET /videos/{video_id}/stream

5.3 Search APIs

Search Videos

GET /search?query=system+design&limit=10&offset=0&sort=views

{
 "results": [
 {
 "video_id": 456,
 "title": "How to Learn System Design",
 "description": "A complete guide to mastering system design",
 "thumbnail_url": "https://cdn.example.com/thumbnails/456.jpg",
 "channel_id": 45678,
 "view_count": 150000,
 },
 ...
],
}

5.4 Engagement APIs

Like a Video

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 17/29

Request:

Response:

Response:

POST /videos/{video_id}/like
Authorization: Bearer jwt_token

Comment on a Video

POST /videos/{video_id}/comments
Authorization: Bearer jwt_token

{
 "content": "Great video! Very informative."
}

{
 "comment_id": 987,
 "message": "Comment added successfully."
}

Get Comments on a Video

GET /videos/{video_id}/comments?limit=10&offset=0

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 18/29

Video transcoding is the process of converting a raw video file into multiple format
resolutions, and bitrates to ensure smooth playback across different devices, netwo
speeds, and screen sizes.

This process is critical for video streaming platforms like YouTube and Netflix, whe
videos need to be accessible on a wide range of devices—from high-end desktops w

{
 "comments": [
 {
 "comment_id": 987,
 "user": "john_doe",
 "content": "Great video! Very informative.",
 "created_at": "2025-01-30T10:30:00Z"
 }
]
}

6. Diving Deep into Core Use-Cases

6.1 Video Transcoding

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 19/29

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F68d5a4c4-958b-4713-b261-e4de391cc759_3016x954.png

fast internet to mobile phones on limited bandwidth.

To achieve smooth and adaptive streaming, we use Adaptive Bitrate Streaming (AB
This allows the client to dynamically switch between different quality levels based o
the user's network speed, ensuring an optimal viewing experience.

When a video is uploaded, it undergoes post-processing to convert it into a streama
format.

This process is often executed in steps using a pipeline to produce the final output.

A user uploads a raw video file (e.g., MP4, MOV, AVI).

The raw file is stored in Object Storage (e.g., AWS S3) directly from the user’s
device.

Metadata is recorded in the Videos Metadata Table, including:

video_id

duration

status = "processing"

Once the raw file is uploaded, the Upload Service sends a message to a Messag
Queue (e.g., Kafka).

The Transcoding Service workers poll messages from the queue and process jo
asynchronously.

Example Message Sent to Queue

How Video Transcoding Works

Step 1: Uploading & Storing the Raw Video

Step 2: Job Dispatching via Message Queue

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 20/29

The target formats are HLS (HTTP Live Streaming) and DASH (Dynamic
Adaptive Streaming over HTTP), the two most widely used adaptive streaming
protocols.

The raw video file is split into smaller segments (e.g., 10-second chunks) using a
tool like FFmpeg.

Each segment is transcoded separately into multiple formats.

Segments can be transcoded parallelly using multiple FFmpeg instances on
worker nodes.

Each video is encoded into multiple bitrates/resolutions (e.g., 240p, 360p, 480p,
720p, 1080p).

A “master” manifest references these resolutions, letting the player decide whic
one to fetch.

Each resolution is split into short segments (2-10 seconds) for HLS and DASH
adaptive streaming.

Why Segment-Based?
Short segments allow quick adaptation. If the network changes mid-video, the
next segment can be requested at a different bitrate/resolution with minimal
playback disruption.

{
 "video_id": 456,
 "raw_file_url": "s3://video-uploads/12345.mp4",
 "target_resolutions": ["240p", "480p", "720p", "1080p"],
 "target_formats": ["HLS", "DASH"]
}

Step 3: Decoding the Raw Video

Step 4: Encoding into Multiple Resolutions

Step 5: Generating Video Segments for Streaming

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 21/29

https://www.cloudflare.com/learning/video/what-is-http-live-streaming/
https://www.cloudflare.com/learning/video/what-is-mpeg-dash/

A thumbnail image is created as a preview.

The user can later update the thumbnail manually.

The transcoded videos, thumbnails, and manifest files are stored in Object
Storage (e.g., AWS S3).

Example storage structure:

The Video Metadata Table is updated with:

Transcoded URLs for different resolutions

Thumbnail URL

status = "live" (video is ready to stream).

The CDN caches video segments for low-latency streaming and fast access.

The Video Streaming Component is responsible for orchestrating video playback a
adaptive streaming.

Rather than pushing large media files through a single backend endpoint, modern
platforms provide manifests describing how to fetch the media segments.

Step 6: Generating Thumbnails

Step 7: Storing Transcoded Files in Object Storage

s3://video-platform/videos/12345/240p.m3u8
s3://video-platform/videos/12345/480p.m3u8
s3://video-platform/videos/12345/thumbnail.jpg

Step 8: Updating the Database & CDN

6.2 Video Streaming

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 22/29

Clients then download video segments directly from the CDN, which offloads huge
bandwidth demands from your core application servers.

Below is the typical workflow to support smooth video streaming:

1. User Initiates Playback

a. The user clicks on a video thumbnail or opens a video page on a web brows
mobile app, or smart TV app.

2. Fetching Video Metadata

a. The client app sends a request to the Video Metadata Service via the API
Gateway or Load Balancer to retrieve:

i. Video metadata (title, description, thumbnail, channel info).

ii. A streaming manifest URL (e.g., HLS .m3u8 or DASH .mpd file), which
guides the player in fetching and playing the video.

3. Downloading the Manifest File

a. The client makes an HTTP GET request to the CDN to download the mani
file.

b. This manifest file contains links to video segments in multiple resolutions a
bitrates (generated in the video transcoding process), allowing adaptive
streaming based on the user’s internet speed.

4. Retrieving Video Segments & Adaptive Bitrate

a. The video player chooses an initial bitrate (often mid or low) and download
the first segment from the CDN.

b. It continuously monitors download speed and buffer level. If downloads
arrive quickly, it may switch to higher quality; if the connection slows, it dr
to lower quality.

5. Continuous Playback

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 23/29

a. The player sequentially requests segments: segment_01.ts,

segment_02.ts, etc., or corresponding .m4s fragments for DASH.

b. It buffers data, rendering frames to the user in a near real-time fashion.

6. End of Playback / Seeking

a. When playback concludes or the user seeks (e.g., moves the timeline forwar
the player calculates which segments to request next and continues the sam
segment download process.

A video platform’s Search Engine enables users to quickly find videos by keywords
titles, descriptions, tags, or even transcribed captions.

This requires:

1. Indexing: Transforming raw metadata into a data structure optimized for text
retrieval (e.g., inverted indexes).

2. Query Parsing: Understanding user queries, possibly with keyword-based or N
based improvements.

3. Ranking/Scoring: Determining how relevant each video is to the user’s query,
often incorporating signals like view count, recency, or user preferences.

Whenever a video is uploaded or updated, the system pushes the new/updated
metadata to a search indexing service (e.g., Elasticsearch, Solr, or a custom
system).

This process might be asynchronous—meaning a short delay between upload a
availability in search results.

6.3 Video Search

Architecture and Components:

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 24/29

Inverted Index: Each word maps to a list of video IDs where it appears, enablin
fast lookups.

The Search Service queries the inverted index with relevant filters (e.g., languag
upload date).

A scoring/ranking algorithm sorts results by relevance, which might incorpora
additional signals like popularity or watch time.

If the user is logged in, search could factor in watch history, subscriptions, or
topic preferences.

Decompose services into microservices (Upload Service, Transcoding Service,
Metadata Service). Deploy microservices using Kubernetes (K8s) + Docker for auto-
scaling.

Use Load Balancers to distribute traffic across multiple service instances

A single metadata database cannot handle millions of video records efficiently.

Shard Metadata Across Multiple Databases:

Shard by video_id to distribute the load across multiple database instances.

Example:

7. Addressing Non-Functional
Requirements

7.1 Scalability

Horizontal Scaling

Metadata Sharding

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 25/29

video_1 → shard_1 (DB1)

video_2 → shard_2 (DB2)

video_1000000 → shard_n (DB_n)

Use a Shard Lookup Service:

Maintains a mapping of video IDs to shards.

Clients query the lookup service before fetching metadata.

Cache Frequently Accessed Metadata:

Use Redis or Memcached to cache video metadata and avoid excessive databas
reads.

Transcoding a single video file sequentially is slow and inefficient, especially for lar
video files.

Break Video into Segments & Transcode in Parallel:

Split the video into smaller independent segments (e.g., 2-10 seconds each).

Distribute segments across multiple transcoding workers.

Merge the transcoded segments back into a single stream.

Deploy compute, storage, and databases across multiple availability zones (AZs
and regions.

Example: AWS (US-East, US-West, Europe, Asia).

Distributed & Parallel Transcoding

7.2 Availability

Multi-Region Deployment

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 26/29

Store videos in multi-region object storage (AWS S3, Google Cloud Storage) wit
geo-redundancy.

Enable replication to a backup region.

Use primary-replica databases (PostgreSQL, MySQL, CockroachDB) for failove

In case of failure, the load balancer routes requests to a healthy replica.

Users might upload duplicate videos, wasting storage and processing power.

Identify and Deduplicate Videos Before Processing

Hashing-Based Deduplication

Generate a unique hash (SHA-256, MD5) from the video file.

If a hash matches an existing video, store a reference instead of a new copy.

Perceptual Hashing (PHash) for Similar Videos

Detect similar but slightly altered videos (e.g., re-uploads with minor edits).

Machine Learning Deduplication

Use ML models to compare video/audio frames and detect near-duplicates.

Frequently watched videos → Hot Storage (SSD-backed, fast access).

Less popular videos → Warm Storage (HDD-backed, moderate latency).

Rarely accessed videos → Cold Storage (AWS Glacier, Google Coldline).

Redundant Storage & Replication

Database Replication & Failover

7.3 Cost Efficiency

Video Deduplication

Multi-Tiered Storage (Hot, Warm, Cold)

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 27/29

Hope you enjoyed reading this article.

If you found it valuable, hit a like ❤ and if you have any questions or suggestions,
leave a comment.

108 Likes ∙ 3 Restacks

Discussion about this post

1 more comment...

Previous Next

Write a comment...

Feb 25

Liked by Ashish Pratap Singh

1 reply by Ashish Pratap Singh

Kannan

Crystal clear explanation... informative!!

LIKE (1) REPLY

Comments Restacks

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 28/29

https://substack.com/note/p-155511993/restacks?utm_source=substack&utm_content=facepile-restacks
https://blog.algomaster.io/p/design-youtube-system-design-interview/comments
https://blog.algomaster.io/p/design-youtube-system-design-interview/comment/95991726
https://blog.algomaster.io/p/design-youtube-system-design-interview/comment/95991726
https://substack.com/profile/321285513-kannan?utm_source=substack-feed-item
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

© 2025 Ashish Pratap Singh ∙ Privacy ∙ Terms ∙ Collection notice
Substack is the home for great culture

5/2/25, 5:24 PM Design YouTube - System Design Interview

https://blog.algomaster.io/p/design-youtube-system-design-interview 29/29

https://substack.com/privacy
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/

