
Design a URL Shortener

MAY 01, 2025 ∙ PAID

Share

A URL shortener is a service that takes a long URL and returns a shorter, unique al
that redirects to the original URL.

Source: https://tinyurl.com

These services have become increasingly popular with the rise of social media
platforms with character limits and the need for cleaner, more shareable links.

ASHISH PRATAP SINGH

1

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 1/18

https://blog.algomaster.io/publish/post/157750264
javascript:void(0)
https://substack.com/@ashishps
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F6fd33d17-c20b-4c0d-b56c-daebb20c6d39_940x1008.png


In this article, we will walk through the process of designing a scalable and efficien
URL shortener service that can handle millions of URLs, provide fast redirections, a
ensure high availability:

Before diving into the design, lets outline the functional and non-functional
requirements.

Generate a unique short URL for a given long URL

Redirect the user to the original URL when the short URL is accessed

Allow users to customize their short URLs (optional)

Support link expiration where URLs are no longer accessible after a certain per

Provide analytics on link usage (optional)

High availability (the service should be up 99.9% of the time)

Low latency (url shortening and redirects should happen in milliseconds)

Scalability (the system should handle millions of requests per day)

Durability (shortened URLs should work for years)

Security to prevent malicious use, such as phishing.

1. Requirements Gathering

1.1 Functional Requirements:

1.2 Non-Functional Requirements:

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 2/18



Let’s assume the following traffic characteristics:

Daily URL Shortening Requests: 1 million requests per day

Read:Write ratio: 100:1 (for every URL creation, we expect 100 redirects)

Peak Traffic: 10x the average load

URL Lengths: Average original URL length of 100 characters

Average Writes Per Second (WPS): (1,000,000 requests / 86,400 seconds) ≈ 12

Peak WPS: 12 ×10 = 120

Since Read:Write ratio is 100:1

Average Redirects per second (RPS): 12 * 100 = 1,200

Peak RPS: 120 * 100 = 12,000

For each shortened URL, we need to store the following information:

Short URL: 7 characters (Base62 encoded)

Original URL: 100 characters (on average)

Creation Date: 8 bytes (timestamp)

Expiration Date: 8 bytes (timestamp)

Click Count: 4 bytes (integer)

2. Capacity Estimation

2.1 Throughput Requirements

2.2 Storage Estimation

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 3/18



Total storage per URL:

Storage per URL: 7 + 100 + 8 + 8 + 4 =127 bytes

Storage requirements for one year:

Total URLs per Year: 1,000,000 × 365 = 365,000,000

Total Storage per Year: 365,000,000 × 127 bytes ≈ 46.4 GB

Assuming the HTTP 301 redirect response size is about 500 bytes (includes headers
and the short URL).

Total Read Bandwidth per Day: 100,000,000 × 500 bytes = 50 GB / day

Peak Bandwidth: If peak traffic is 10x average, the peak bandwidth could be as
high as 500 bytes × 12,000 RPS = 6 MB/s

Since it’s a read-heavy system, caching can significantly reduce the latency for read
requests.

If we want to cache some of the hot URLs, we can follow the 80-20 rule where 20% 
the URLs generate 80% of the read traffic.

Since we have 1 million writes per day, if we only cache 20% of the hot urls in a day,
Total cache memory required = 1M * 0.2 * 127 Bytes = 25.4 MB.

Assuming a cache hit ratio of 90%, we only need to handle 10% of the redirect reque
directly from the database.

Requests hitting the DB: 1,200 × 0.10 ≈ 120 RPS

2.3 Bandwidth Estimation

2.4 Caching Estimation

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 4/18



This is well within the capabilities of most distributed databases like DynamoDB o
Cassandra, especially with sharding and partitioning.

To handle the above estimations:

API Servers: Start with 4-6 instances behind a load balancer, each capable of
handling 200-300 RPS.

Database: A distributed database with 10-20 nodes to handle both storage and
high read/write throughput.

Cache Layer: A distributed cache with 3-4 nodes, depending on the load and
cache hit ratio.

On a high level, we would need following components in our design:

2.5 Infrastructure Sizing

3. High Level Design

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 5/18

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F57794829-95e3-4e38-a615-34527d6cecdd_2374x1370.png


1. Load Balancer: Distributes incoming requests across multiple application serv

2. Application Servers: Handles incoming requests for shortening URLs and
redirecting users.

3. URL Generation Service: Generates short URLs, handles custom aliases, and
manages link expirations.

4. Redirection Service: Redirects the users to the original URL.

5. Database: Stores mappings between short URLs and long URLs.

6. Cache: Stores frequently accessed URL mappings for faster retrieval.

7. Analytics Service (optional): Tracks usage statistics like the number of clicks,
geographic location, etc.

4. Database Design

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 6/18

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F57794829-95e3-4e38-a615-34527d6cecdd_2374x1370.png


To choose the right database for our needs, let's consider some factors that can affe
our choice:

Given these points, a NoSQL database like DynamoDB or Cassandra is a better
option due to their ability to efficiently handle billions of simple key-value lookups
and provide high scalability and availability.

We would need two tables: one for storing url mappings and one for storing user
related information.

4.1 SQL vs NoSQL

4.2 Database Schema

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 7/18

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc41c4f22-c3df-4515-926a-0f2f1f03dcf8_1312x512.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Feda47435-0ebb-4426-9a17-c125dbe2b551_2496x1600.png


We'll design RESTful APIs that are intuitive, efficient, and scalable.

Let's break down our API design into several key endpoints:

This endpoint creates a new short URL for a given long URL.

Sample Request:

5. API Design

5.1 URL Shortening API

Endpoint: POST /api/v1/shorten

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 8/18

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Feda47435-0ebb-4426-9a17-c125dbe2b551_2496x1600.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F6f1e779f-6493-4a00-adec-5d203a02169b_1354x312.png


Sample Response:

This endpoint redirects the user to the original long URL.

Sample Response:

5.2 URL Redirection API

Endpoint: GET /{short_url_key}

HTTP/1.1 301 Moved Permanently Location: 
https://www.example.com/some/very/long/url

6. Diving Deep into Key Components

6.1 URL Generator Service

5/1/25, 4:44 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 9/18

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F6f1e779f-6493-4a00-adec-5d203a02169b_1354x312.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F3485f63d-72bd-4584-af4e-1634188c12e5_1354x312.png


The primary function of the service is to generate a short, unique URL for each long
URL provided by the user.

Here are some things to think about when picking an algorithm to shorten the URL

URL Length: Shorter is generally better, but it limits the number of possible
distinct URLs you can generate.

Scalability: The algorithm should work well even with billions of URLs.

Collision Handling: The algorithm should be able to handle duplicate url
generations.

A common approach for generating short URLs is to use a hash function, such as
MD5 or SHA-256 to generate a fixed-length hash of the original URL.

This hash is then encoded into a shorter form using Base62.

Base62 uses alphanumeric characters (A-Z, a-z, 0-9), which are URL-friendly and
provide a dense encoding space.

The length of the short URL is determined by the number of characters in the Base
encoded string.

A 7-character Base62 string can represent approximately 3.5 billion unique UR
(62^7).

Example Workflow:

1. User submits a request to generate short url for the long url:

https://www.example.com/some/very/long/url/that/needs/to/b
shortened

Approach 1: Hashing and Encoding

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 10/18



2. Generate an MD5 hash of the long URL. MD5 produces a 128-bit hash, typicall

32-character hexadecimal string: 1b3aabf5266b0f178f52e45f4bb430eb

3. Instead of encoding the entire 128-bit hash, we typically use a portion of the ha
(e.g., the first few bytes) to create a more manageable short URL.

a. First 6 bytes of the hash: 1b3aabf5266b

4. Convert these bytes to decimal: 1b3aabf5266b (hexadecimal) →

47770830013755 (decimal)

5. Encode the result into a Base62 encoded string: DZFbb43

The specific choice of 6 bytes (48 bits) is important because it produces a decimal
number that typically converts to a Base62 string of approximately 7 characters.

Although this solution works for most cases, it has few issues:

It can generate the same shortened url for the identical long url requests.

Although rare, collisions can happen, where two different URLs generate the
same hash.

Collision Resolution Strategies:

Re-Hashing: If a collision is detected, the service can re-hash the original URL
with a different seed or use additional bits from the original hash to generate a
unique short URL.

Incremental Suffix: Another approach is to append an incremental suffix (e.g.,
"-1", "-2") to the short URL until a unique key is found.

Instead of hashing, another method to generate short URLs is to use incremental ID

In this approach, each new URL that is added to the system is assigned a unique, au
incrementing ID.

Approach 2: Unique ID Generation

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 11/18



For example, the first URL might be assigned ID 1, the second URL 2, and so on

Once the ID is generated, it is converted into a shorter, URL-friendly format using
Base62 encoding. This encoded string becomes the short URL.

Because the IDs are generated incrementally, each new ID is unique and sequential
There is no possibility that two different URLs will receive the same ID, as long as t
ID generation mechanism (e.g., a database with an auto-incrementing primary key) 
functioning correctly.

While the incremental ID approach is straightforward and collision-free, there are a
few considerations:

Predictability: Incremental IDs are predictable, which means that someone cou
potentially infer the number of URLs shortened by your service or guess other
users' URLs by simply incrementing the short URL.

Mitigation: You can add a layer of obfuscation by encoding the ID with a
random seed or shuffling the ID before encoding it with Base62.

Scalability: If not designed properly, a single point of ID generation (like a
centralized database) can become a scalability bottleneck.

Mitigation: Distributed ID generation strategies (like Twitter’s Snowflake) 
be used to maintain scalability while preserving uniqueness.

Custom aliasing allows users to specify their own short URL instead of accepting a
system-generated one.

This feature is especially useful for branding or memorable URLs.

Custom Alias Validation:

Custom Aliasing

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 12/18



Uniqueness Check: The service must ensure that the custom alias provided by 
user is unique and not already in use. This requires a lookup in the database to
verify that the alias does not exist.

Character Validation: Custom aliases should be validated to ensure they contai
only allowed characters (e.g., alphanumeric characters, hyphens). This prevents
creation of problematic or non-URL-friendly aliases.

Reserved Aliases: Some aliases might be reserved for internal use (e.g., "help",
"admin", "about"). The Service Layer should check against a list of reserved wo
to prevent users from using these.

Custom Alias Storage:

Alias Mapping: Once validated, the custom alias is mapped to the original URL
and stored in the database, similar to system-generated short URLs.

Conflict Resolution: If the requested custom alias is already taken, the Service
Layer should return an appropriate error message or suggest alternatives.

Link expiration allows URLs to be valid only for a specified period, after which they
become inactive.

Expiration Date Handling:

User-Specified Expiration: Users can specify an expiration date when creating
the short URL. The service should validate this date to ensure it's in the future
and within allowable limits (e.g., not exceeding a maximum expiration period).

Default Expiration: If no expiration date is provided, the service can assign a
default expiration period (e.g., 1 year) or keep the link active indefinitely.

Expiration Logic:

Link Expiration

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 13/18



Background Jobs: A background job or cron job can be scheduled to periodical
check for expired URLs and mark them as inactive or delete them from the
database.

Real-Time Expiration: During the redirection process, the service checks whet
the URL has expired. If expired, the service can return an error message or
redirect the user to a default page.

When a user accesses a short URL, this service is responsible for redirecting the use
to the original URL.

This involves two key steps:

Database Lookup: The Service Layer queries the database to retrieve the origin
URL associated with the short URL. This lookup needs to be optimized for spe
as it directly impacts user experience.

Redirection: Once the long URL is retrieved, the service issues an HTTP redire
response, sending the user to the original URL.

Example Workflow:

1. A user clicks on https://short.ly/abc123.

2. The Redirection Service receives the request and extracts the short URL identifi

(abc123).

3. The service looks up abc123 in the database or cache to find the associated lon
URL.

4. The service issues a 301 or 302 HTTP redirect response with the Location
header set to the long URL (e.g., https://www.example.com/long-url).

5. The user's browser follows the redirect and lands on the original URL.

6.2 Redirection Service

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 14/18



To reduce database load and improve latency, frequently accessed short URLs can b
cached in an in-memory store like Redis.

The Redirection Service should first check the cache before querying the databas

If the service needs to track analytics, such as the number of times a short URL is
clicked, a separate analytics service can be introduced:

Event Logging: Use a message queue (e.g., Kafka) to log each click event. This
decouples the analytics from the core redirection service, ensuring that it doesn
introduce latency.

Batch Processing: Process logs in batches for aggregation and storage in a data
warehouse for later analysis.

Deploy the API layer across multiple instances behind a load balancer to distribute
incoming requests evenly.

Implement sharding to distribute data across multiple database nodes.

Caching for Performance

6.3 Analytics Service

7. Addressing Key Issues and Bottleneck

7.1 Scalability

API Layer

Sharding

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 15/18



Range-Based Sharding: If you are using an auto-incrementing ID as the shard
key, the first shard might store IDs 1 to 1,000,000, the second shard 1,000,001 to
2,000,000, and so on.

Limitations: If your data isn’t evenly distributed, one shard may become mu
larger than others, leading to uneven load distribution (known as a "hotspo

Hash-Based Sharding: It involves applying a hash function to the shard key to
determine which shard the data should go to. For example, you might hash the
short URL identifier and then take the modulo with the number of shards to

determine the shard (e.g., hash(short_url) % N where N is the number of
shards).

Limitations: When scaling out (adding new shards), re-hashing and
redistributing data can be challenging and requires consistent hashing
techniques to minimize data movement when adding or removing shards.

Store frequently accessed short URL-to-long URL mappings in an in-memory cach
like Redis or Memcached. This reduces the need to query the database on every
request, significantly improving response times.

Use database replication to ensure that data is available even if some nodes fail.

Implement automated failover mechanisms for the API and data store layers to swit
to backup servers in case of failure.

Caching

7.2 Availability

Replication

Failover

Geo-Distributed Deployment

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 16/18



Deploy the service across multiple geographical regions to reduce latency and impr
availability.

If the short URL has expired, the service should return a meaningful response (eg..
HTTP 410) rather than attempting to redirect.

If the short URL does not exist in the database, the service should handle this
gracefully (eg.. HTTP 404 Not Found status code).

If a conflict arises where multiple long URLs could map to the same short URL (due
a hash collision or manual alias conflict), the service should have a strategy to resolv
this.

Implement collision detection during URL creation to prevent conflicts, and ens
that the Redirection Service always resolves to the correct long URL.

To prevent abuse (e.g., spamming the service with thousands of URLs), implement r
limiting at the API layer.

Ensure that the URLs being shortened do not contain malicious content.

7.3 Handling Edge Cases

Expired URLs

Non-Existent URLs

URL Conflicts

7.4 Security

Rate Limiting

Input Validation

HTTPS

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 17/18



All communication between clients and the service should be encrypted using HTT
to prevent eavesdropping and man-in-the-middle attacks.

Set up monitoring for unusual activity patterns and trigger alerts for potential DDo
attacks or misuse.

Thank you for reading!

I hope you have a lovely day!

See you soon,
Ashish

1 Like

Monitoring and Alerts

© 2025 Ashish Pratap Singh ∙ Privacy ∙ Terms ∙ Collection notice
Substack is the home for great culture

5/1/25, 4:45 PM Design a URL Shortener - by Ashish Pratap Singh

https://blog.algomaster.io/p/65a5faf2-ccb7-4734-b9fc-f26dbf6aed46 18/18

https://substack.com/privacy
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/

