
1. AQS (Abstract Queue Synchronizer)

AbstractQueuedSynchronizer (AQS) is a low-level
framework in Java concurrency
(java.util.concurrent.locks package).

It is used to build synchronization utilities like:​

●​ ReentrantLock​

●​ Semaphore​

●​ CountDownLatch​

●​ ReentrantReadWriteLock

2. Types of lock:

1.​Exclusive Lock:

-​ Only one thread can hold at a time

ReentrantLock

ReentrantReadWriteLock

Purpose: Allow multiple threads to read concurrently, but only
one thread to write.

Two locks:

a.​Read lock (readLock()): Multiple threads can hold it
simultaneously.​

b.​Write lock (writeLock()): Exclusive — only one
thread can hold it, blocks readers.​

Reentrancy:​

c.​A thread holding a read or write lock can reacquire it
without deadlocking itself.

Notes:

-​ When read can not write, when write can not write
-​ When read you can read

StampedLock

Limit block write when read => add validate(stamp) for optimistic
read to self-validate while any threads are writing.

2.​Shared Lock:

 Semaphore

●​ Multiple threads can acquire permits simultaneously.​

●​ The semaphore count defines the max threads allowed at
the same time.

CountDownLatch (Wait for 3 threads signal)

●​ Threads wait for a signal (latch reaches zero) before
proceeding.​

●​ Multiple threads can wait simultaneously (shared mode).

3. Atomic Class

1. Atomic Class: Using CAS => optimistic locking.

2. Lock: Using a lock => persimistic locking.

 Why we use them
●​ Avoid locks, so less overhead and better performance in multithreaded code.​

●​ Ensure atomic updates even if multiple threads modify the variable concurrently.

4. When to use ThreadLocal (isolated variables),
when to use Thread Pool (shared variables)

Notes:

-​ Thread Local do not shared variables => Do not conflict.
-​ RequestContext is ThreadLocal Wrapper.
-​ Under Java 19, ThreadLocal is OS Thread. And after Java

19, ThreadLocal is Virtual Thread.

	1. AQS (Abstract Queue Synchronizer)
	AbstractQueuedSynchronizer (AQS) is a low-level framework in Java concurrency (java.util.concurrent.locks package).
	It is used to build synchronization utilities like:​
	●​ReentrantLock​
	●​Semaphore​
	●​CountDownLatch​
	●​ReentrantReadWriteLock

	
	
	
	
	
	
	2. Types of lock:
	1.​Exclusive Lock:
	-​Only one thread can hold at a time
	ReentrantLock
	ReentrantReadWriteLock
	Purpose: Allow multiple threads to read concurrently, but only one thread to write.
	Two locks:
	a.​Read lock (readLock()): Multiple threads can hold it simultaneously.​
	b.​Write lock (writeLock()): Exclusive — only one thread can hold it, blocks readers.​
	Reentrancy:​
	c.​A thread holding a read or write lock can reacquire it without deadlocking itself.
	Notes:
	-​ When read can not write, when write can not write
	-​ When read you can read
	StampedLock
	Limit block write when read => add validate(stamp) for optimistic read to self-validate while any threads are writing.
	2.​Shared Lock:
	 Semaphore
	●​Multiple threads can acquire permits simultaneously.​
	●​The semaphore count defines the max threads allowed at the same time.
	CountDownLatch (Wait for 3 threads signal)
	●​Threads wait for a signal (latch reaches zero) before proceeding.​
	●​Multiple threads can wait simultaneously (shared mode).
	

	3. Atomic Class
	1. Atomic Class: Using CAS => optimistic locking.
	2. Lock: Using a lock => persimistic locking.
	 Why we use them

	4. When to use ThreadLocal (isolated variables), when to use Thread Pool (shared variables)
	Notes:
	-​Thread Local do not shared variables => Do not conflict.
	-​ RequestContext is ThreadLocal Wrapper.
	-​Under Java 19, ThreadLocal is OS Thread. And after Java 19, ThreadLocal is Virtual Thread.

