
1. AQS (Abstract Queue Synchronizer) 

AbstractQueuedSynchronizer (AQS) is a low-level 
framework in Java concurrency 
(java.util.concurrent.locks package). 

It is used to build synchronization utilities like:​
 

●​ ReentrantLock​
 

●​ Semaphore​
 

●​ CountDownLatch​
 

●​ ReentrantReadWriteLock 

 

 

 

 

 

 



2. Types of lock: 

1.​Exclusive Lock:  

-​ Only one thread can hold at a time 

ReentrantLock 

 
 
 
 
 
 



ReentrantReadWriteLock 

Purpose: Allow multiple threads to read concurrently, but only 
one thread to write. 

Two locks: 

a.​Read lock (readLock()): Multiple threads can hold it 
simultaneously.​
 

b.​Write lock (writeLock()): Exclusive — only one 
thread can hold it, blocks readers.​
 

Reentrancy:​
 

c.​A thread holding a read or write lock can reacquire it 
without deadlocking itself. 

Notes: 

-​  When read can not write, when write can not write 
-​  When read you can read 

 

StampedLock 

Limit block write when read => add validate(stamp) for optimistic 
read to self-validate while any threads are writing.  

 



2.​Shared Lock: 

  Semaphore 

●​ Multiple threads can acquire permits simultaneously.​
 

●​ The semaphore count defines the max threads allowed at 
the same time. 

 



CountDownLatch (Wait for 3 threads signal) 

●​ Threads wait for a signal (latch reaches zero) before 
proceeding.​
 

●​ Multiple threads can wait simultaneously (shared mode). 

 



3. Atomic Class 

1. Atomic Class: Using CAS => optimistic locking. 

2. Lock: Using a lock => persimistic locking. 

 Why we use them 
●​ Avoid locks, so less overhead and better performance in multithreaded code.​

 
●​ Ensure atomic updates even if multiple threads modify the variable concurrently. 

 
 
 
 



4. When to use ThreadLocal (isolated variables), 
when to use Thread Pool (shared variables) 

 



Notes:  

-​ Thread Local do not shared variables => Do not conflict. 
-​  RequestContext is ThreadLocal Wrapper. 
-​ Under Java 19, ThreadLocal is OS Thread. And after Java 

19, ThreadLocal is Virtual Thread. 
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