1. AQS (Abstract Queue Synchronizer)

AbstractQueuedSynchronizer (AQS) is a low-level
framework in Java concurrency
(java.util.concurrent.locks package).

It is used to build synchronization utilities like:

e ReentrantLock

Semaphore
e CountDownLatch

ReentrantReadWriteLock

2. Types of lock:

1. Exclusive Lock:

- Only one thread can hold at a time

ReentrantLock

(9 Copy code

java.util.concurrent. locks.ReentrantLock;

(String[] args) {
= () = {
lock. lock();
{
System.out.println(Thread.currentThread().getName() +
Thread.sleep();

(InterruptedException e) {
e.printStackTrace();
{
System.out.println(Thread.currentThread().getName() +
lock.unlock();

=0; 1< 3; i++) {
(task).start();

ReentrantReadWritelLock

Purpose: Allow multiple threads to read concurrently, but only
one thread to write.

Two locks:

a. Read lock (readLock ()): Multiple threads can hold it
simultaneously.

b. Write lock (writelLock()): Exclusive — only one
thread can hold it, blocks readers.

Reentrancy:

c. A thread holding a read or write lock can reacquire it
without deadlocking itself.

Notes:

- When read can not write, when write can not write
- When read you can read

StampedLock

Limit block write when read => add validate(stamp) for optimistic
read to self-validate while any threads are writing.

2. Shared Lock:

Semaphore

e Multiple threads can acquire permits simultaneously.

e The semaphore count defines the max threads allowed at
the same time.

2 Shared Mode — Semaphore

* Multiple threads can acquire permits simultaneously.

¢ The semaphore count defines the max threads allowed at the same time.

java (9 Copy code

java.util.concurrent.Semaphore;

{

(String[] args) {

= () —= {
{
semaphore.acquire();
System.out.println(Thread.currentThread().getName{) +
Thread.sleep();

(InterruptedException e) {

e.printStackTrace();

{
System.out.println(Thread.currentThread().getName() +
semaphore. release();

=0; 1< 5; i++) {
(task).start();

CountDownLatch (Wait for 3 threads signal)

e Threads wait for a signal (latch reaches zero) before
proceeding.

e Multiple threads can wait simultaneously (shared mode).

(3 Copy code
java.util.concurrent.CountDownlLatch;

{

(String[] args) {
=() > {
System.out.println(Thread.currentThread().getName() +
latch. countDown();

=0; i< 3; i) {
(worker).start();

{

latch.await();

System.out.println(
(InterruptedException e) {

e.printStackTrace();

}

Output example:

mathematica (3 Copy code

Thread-
Thread-
Thread—
All '

Multiple threads can signal the latch, main thread waits until all done.

3. Atomic Class
1. Atomic Class: Using CAS => optimistic locking.
2. Lock: Using a lock => persimistic locking.

Why we use them
e Avoid locks, so less overhead and better performance in multithreaded code.

e Ensure atomic updates even if multiple threads modify the variable concurrently.

B Common Operations

Operation Example

Get current value get()

Set value set(value)

Compare and set compareAndSet (expect, update)

Increment incrementAndGet() |/ getAndIncrement()

Decrement decrementAndGet()

Add a value addAndGet(delta)

Update with a function updateAndGet(x — x*2)

4. When to use ThreadLocal (isolated variables),
when to use Thread Pool (shared variables)

@ ThreadLocal

Purpose:
* Provides per-thread variables — each thread has its own independent copy.
* Threads do not share the value, even if they run the same code.

When to use:

1. Thread-specific state
* Example: per-thread counters, session info, or database connections.
* Avoid passing the same object through multiple method calls.

2. Avoid synchronization
* Each thread has its own copy = no locks needed.

3. Examples:

java (9 Copy code
ThreadLocal<Integer> threadLocalCounter = ThreadlLocal.withInitial(() —= @)

threadLocalCounter.set(threadLocalCounter.get() + 1);

* Each thread sees its own counter value, independent of other threads.

Do NOT use ThreadLocal when:

* You need threads to share the same data.
» For shared counters or caches - use Atomic variables or synchronized structures.

@ Executor [ThreadPoolExecutor

Purpose:
+ Manages thread creation and task execution.
* Allows reuse of threads and limiting concurrency.
* Handles multiple tasks efficiently.

When to use:

1. Running multiple tasks concurrently

* CPU-bound or I/O-bound tasks that can run in parallel.
2. Avoid creating too many threads manually

* Executors reuse threads - reduces overhead.
3. Control concurrency and queueing

* corePoolSize , maximumPoolSize , workQueue control parallelism.
Example:
java (9 Copy code

= Executors.newFixedThreadPool(2);

executor.submit(() — System.out.println(Thread.currentThread().getName()));

* The executor decides which thread runs which task.

Do NOT use Executor when:

* You need per-thread isolated data unless comr |, =d with ThreadLocal .

Notes:

- Thread Local do not shared variables => Do not conflict.

- RequestContext is ThreadLocal Wrapper.

- Under Java 19, ThreadLocal is OS Thread. And after Java
19, ThreadLocal is Virtual Thread.

	1. AQS (Abstract Queue Synchronizer)
	AbstractQueuedSynchronizer (AQS) is a low-level framework in Java concurrency (java.util.concurrent.locks package).
	It is used to build synchronization utilities like:​
	●​ReentrantLock​
	●​Semaphore​
	●​CountDownLatch​
	●​ReentrantReadWriteLock

	
	
	
	
	
	
	2. Types of lock:
	1.​Exclusive Lock:
	-​Only one thread can hold at a time
	ReentrantLock
	ReentrantReadWriteLock
	Purpose: Allow multiple threads to read concurrently, but only one thread to write.
	Two locks:
	a.​Read lock (readLock()): Multiple threads can hold it simultaneously.​
	b.​Write lock (writeLock()): Exclusive — only one thread can hold it, blocks readers.​
	Reentrancy:​
	c.​A thread holding a read or write lock can reacquire it without deadlocking itself.
	Notes:
	-​ When read can not write, when write can not write
	-​ When read you can read
	StampedLock
	Limit block write when read => add validate(stamp) for optimistic read to self-validate while any threads are writing.
	2.​Shared Lock:
	 Semaphore
	●​Multiple threads can acquire permits simultaneously.​
	●​The semaphore count defines the max threads allowed at the same time.
	CountDownLatch (Wait for 3 threads signal)
	●​Threads wait for a signal (latch reaches zero) before proceeding.​
	●​Multiple threads can wait simultaneously (shared mode).
	

	3. Atomic Class
	1. Atomic Class: Using CAS => optimistic locking.
	2. Lock: Using a lock => persimistic locking.
	 Why we use them

	4. When to use ThreadLocal (isolated variables), when to use Thread Pool (shared variables)
	Notes:
	-​Thread Local do not shared variables => Do not conflict.
	-​ RequestContext is ThreadLocal Wrapper.
	-​Under Java 19, ThreadLocal is OS Thread. And after Java 19, ThreadLocal is Virtual Thread.

