9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

Detailed explanation of the class
loading process

2 Guide &® Java € Jvm @ About 3188 words R About 11 minutes

Class lifecycle

The entire lifecycle of a class, from the time it's loaded into the virtual machine's memory
to the time it's unloaded, can be summarized into seven phases: loading, verification,
preparation, resolution, initialization, using, and unloading. The verification, preparation,
and resolution phases are collectively referred to as linking.

The sequence of these 7 stages is shown in the figure below:

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 1/10

https://javaguide.cn/article/

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

KHER R

-

- e = e = e e = e =

plIES

Edz

ENE

Class loading process

Class files need to be loaded into the virtual machine before they can be run
and used. So how does the virtual machine load these Class files?

The system loads Class files in three main steps: loading -> linking -> initializatie
The linking process can be further divided into three steps: verification -> prepar“
-> parsing .

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 2/10

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

-

P e e

IS

See Java Virtual Machine Specification - 5.3. Creation and Loading for details .

load

The first step in the class loading process mainly completes the following three things:

1. Gets the binary byte stream that defines this class by its full class name.

2. Convert the static storage structure represented by the byte stream into the runtime
data structure of the method area.

3. Generate an object representing the class in memory Class as the access entry for the
data in the method area.

The three points above in the virtual machine specification are not specific and therefore
very flexible. For example, "obtaining the binary byte stream defining this class by its fully
qualified class name" doesn't specify where or how to obtain it (e.g., from the ZIP network
, dynamically generated during runtime using dynamic proxy technology, or generated
from other files). JAR EAR WAR JSP

The loading process is primarily accomplished through class loaders, which we'll ‘
cuss later. There are many different types of class loaders, and when we want
to load a class, the specific class loader that loads it is determined by the par-

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 3/10

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.3

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

ent delegation model (although this can be broken).

Class loaders and the parent delegation model are also very important knowledge
points, which are covered in detail in the article "Detailed Explanation of Class
Loaders" . When reading this article, just know that they exist.

Each Java class has a reference to the class that loaded it ClassLoader . However, the ar-

ray class is not ClassLoader created by, but is automatically created by the JVM when

needed. When the array class getClassLoader() is obtained through the method
ClassLoader , the element type of the array ClassLoader is consistent.

The loading phase of a non-array class (the action of obtaining the binary byte stream of
the class during the loading phase) is the most controllable phase. We can complete this
step and also customize the class loader to control how the byte stream is obtained (over-
ride a class loader's loadClass() method).

Some actions in the loading phase and the linking phase (such as some bytecode file format
verification actions) are performed in an interleaved manner. The linking phase may have
already begun before the loading phase is completed.

verify

Verification is the first step in the connection phase. The purpose of this
phase is to ensure that the information contained in the byte stream of the
Class file complies with all the constraints of the Java Virtual Machine
Specification and that this information will not endanger the security of the
virtual machine itself when it is run as code.

The verification phase consumes relatively more resources than the entire class loading
process, but it is necessary to effectively prevent the execution of malicious code. At all
times, program security is the top priority.

However, the verification phase isn't mandatory. If all code running in your program (in-
cluding code written by you, from third-party packages, loaded from external sources, and
dynamically generated code) has been repeatedly used and verified, you can consider using

-Xverify:none the " parameter to disable most class verification measures during pro-
duction implementation to shorten VM class loading time. However, it's important to note
that **° —Xverify:none and -noverify " are deprecated in JDK 13 and may be re-
moved in future JDK versions.

The verification phase mainly consists of four inspection stages:

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 4/10

https://javaguide.cn/java/jvm/classloader.html
https://javaguide.cn/java/jvm/classloader.html
https://javaguide.cn/java/jvm/classloader.html

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

1. File format verification (Class file format check)

2. Metadata validation (bytecode semantic checking)

3. Bytecode verification (program semantics checking)

4. Symbol reference verification (class correctness check)

BT RAES S lass BRI HNE, Fhn:
EELIOXCAFEBABEFF L, AR B ETE LA
EHRHALETE AN, BERFHNEEESE AESTIFMNEER,

P PRBIANERTIEXDHN , WRIERSANERFE (JavaidZiM
BY MER, FI: XPMREEFRE (Fjava.lang.O0bject ZSHH%

WMERE) | BTEETHYFT FAFMENE (BfinalBHrI%) F
E.
BT EIER D THEEIRS N, BERFENESEN. F5I2EN, Fia0:
> RUMNSURBESIEH. NRAOVKBERESSE (

BT RM AL FENRKBFRIEEN)

IEZAERYE, FIR0: ZABERNERE. 5% TRESHEE. 23
BE3| AT — 7 [EHEROTH AR

The file format verification phase is performed on the class's binary byte stream. Its prima-
ry purpose is to ensure that the input byte stream is correctly parsed and stored in the
method area, and that the format meets the requirements for describing Java type infor-
mation. Aside from this phase, the remaining three verification phases are performed on
the method area's storage structure and do not directly read or manipulate the byte stream.

The method area is a logical area within the JVM's runtime data area, a memory area
shared by all threads. When the virtual machine uses a class, it reads and parses the
class file to obtain relevant information and then stores it in the method area. The
method area stores information about classes loaded by the virtual machine,
fields, methods, constants, static variables, and the code cache compiled by
the just-in-time compiler .

For a detailed introduction to the method area, it is recommended to read the article
Java Memory Area Detailed Explanation .

Symbolic reference verification occurs during the parsing phase of the class loading .
process. Specifically, it is when the JVM converts symbolic references into direct references
(symbolic references and direct references will be introduced in the parsing phase).

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 5/10

https://javaguide.cn/java/jvm/memory-area.html
https://javaguide.cn/java/jvm/memory-area.html

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

The main purpose of symbol reference verification is to ensure that the parsing phase can
be executed normally. If the symbol reference verification fails, the JVM will throw an ex-
ception, such as:

e java.lang.IllegalAccessError : This exception is thrown when a class attempts to
access or modify a field that it does not have permission to access, or to call a method
that it does not have permission to access.

e java.lang.NoSuchFieldError : This exception is thrown when a class attempts to
access or modify a specified object field and the object no longer contains the field.

e java.lang.NoSuchMethodError : This exception is thrown when a class attempts to
access a specified method and the method does not exist.

Prepare

The preparation phase is the stage where memory is allocated for class vari-
ables and their initial values are set . This memory is allocated in the method area.
There are a few things to note about this phase:

1. At this time, memory allocation only includes class variables (static variables,
static variables modified by the keyword, and associated only with the class, hence
the name class variables), not instance variables. Instance variables are allocated on the
Java heap along with the object when it is instantiated.

2. Conceptually, all memory used by class variables should be allocated in the method
area . However, one thing to note is that before JDK 7, when HotSpot used the
permanent generation to implement the method area, the implementation was
completely consistent with this logical concept. In JDK 7 and later, HotSpot has moved
the string constant pool, static variables, and other objects originally placed in the
permanent generation to the heap. At this time, class variables are stored in the Java
heap along with the Class object. Related reading: "In-depth Understanding of the Java
Virtual Machine (3rd Edition)" Errata #75

3. The initial value set here is usually the data type's default zero value (e.g., 0, 0L, null,

false, etc.). For example, if we define it public static int value=111, the initial
value of the value variable during the preparation phase is 0, not 111 (which is assigned
during the initialization phase). Special cases: For example, if the final keyword is added
to the value variable public static final int value=111, the value during the

Zero values of basic data types : (Image from "In-depth Understanding of the Java
Virtual Machine" 3rd Edition 7.3.3)

preparation phase is assigned to 111.

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 6/10

https://github.com/fenixsoft/jvm_book/issues/75
https://github.com/fenixsoft/jvm_book/issues/75
https://github.com/fenixsoft/jvm_book/issues/75

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

BiEE ® @& L6 s ¥ M@
int 0 boolean false
long oL float 0.0f
short (short) 0 double 0.0d
char "\w0000 " reference null
byte (byte) 0

Analysis

The resolution phase is the process by which the virtual machine replaces
symbolic references in the constant pool with direct references. Resolution is
performed on seven types of symbolic references: classes or interfaces, fields, class meth-
ods, interface methods, method types, method handles, and call qualifiers.

Section 7.3.4 of the third edition of "In-depth Understanding of the Java Virtual Machine"
explains symbolic references and direct references as follows:

7.3.4 @b

AT B MR JavadE SOUHLRE A ikl 3 (97 5 51 B & R ELEE S R L/, 9755 51 FIAE SR 6 5 iF A Class
AR AN RS B £ K, fEClass LA E ELCONSTANT Class_info.
CONSTANT _Fieldref_info. CONSTANT Methodref info®F 288! [R5 it B, ARARHT B Bl ch By 58 A4 EL B

FF 551 (Symbolic References) : %5 5| F LL— LR 5 52k By s | F o4 B d%, F55 0T EUR AT {1
A, F O AR M R B AR W] . R 5| RS AL I N A R, §
R Bz AR — e R 2 m B WL A7 SR p s, SR el BLl i A R ol BLE 4 R,
BRENMEEZMAS I B OSHE TN, FAFSIIHNFmRERHE LE (Javalf M
Ji) MIClass I fERE .

"E#EGIF (Direct References) : ELHES| FIAL AT LUECHESS] H bRl 4R el AHXHwES fRal#t — 16k
[l s B H ARRO 0T . FLER S| R AR AN UL S BR iY P9 A7-A0 R FLEEAE G0, [— M55 5| P LA) e
FLHLS 0 L R B RS] — A MR R T EEESI M, S| A8 B brd 2 ST R L
I AFPAEE.

For example, when a program executes a method, the system needs to know exactly where
that method is located. The Java Virtual Machine (JVM) maintains a method table for each
class, storing all of its methods. To call a class method, simply knowing the offset of the
method in the method table allows direct invocation. By resolving the symbolic reference,
the target method's location in the class's method table can be directly converted to the
method's location within the class, allowing the method to be called. ‘

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 7/10

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

In summary, the parsing phase is the process in which the virtual machine replaces the
symbolic references in the constant pool with direct references, that is, obtaining the point-
er or offset of the class, field, or method in memory.

initialization

The initialization phase is <clinit> () the process of executing the initializa-
tion method and is the last step of class loading. At this step, the JVM begins
to actually execute the Java program code (bytecode) defined in the class.

Note: <clinit> () The method is automatically generated after compilation.

<clinit> () The virtual machine ensures the safety of calling the method in a multi-
threaded environment. Because the <clinit> () method is thread-safe with a lock, class
initialization in a multi-threaded environment may cause multiple threads to be blocked,
and this blocking may be difficult to detect.

For the initialization phase, the virtual machine strictly regulates that there are only 6 cas-
es in which the class must be initialized (the class will only be initialized if it is actively
used):

1. When encountering new , getstatic , putstatic or invokestatic these 4 bytecode
instructions:

o new : Create an instance object of a class.

o getstatic, putstatic : Read or set a type's static field (final except for static
fields that have been modified and have put the results into the constant pool at
compile time).

o invokestatic : Call a static method of a class.

2. When using java.lang.reflect the package method to reflectively call a class, such as
Class.forName("...") , newInstance() etc. If the class is not initialized, its
initialization needs to be triggered.
3. Initialize a class. If its parent class has not been initialized, the initialization of the
parent class will be triggered first.
4. When the virtual machine starts, the user needs to define a main class to be executed (
main the class that contains the method), and the virtual machine will initialize this
class first.
5. MethodHandle and VarHandle can be regarded as lightweight reflection calling
mechanisms. In order to use these two calls, you must first use .
findStaticVarHandle to initialize the class to be called.
6. "Supplement, from issue 745 ' When an interface defines a default method newly
added in JDKS8 (an interface method modified by the default keyword), if an

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 8/10

https://github.com/Snailclimb/JavaGuide/issues/745
https://github.com/Snailclimb/JavaGuide/issues/745

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

implementation class of this interface is initialized, the interface must be initialized
before it.

Class Unloading

The uninstallation section comes from issue#662 and is supplemented by guangi19_.

Unloading a class means that the Class object of the class is GCed.
Uninstalling a class needs to meet three requirements:

1. All instance objects of this class have been GCed, which means that there are no
instance objects of this class in the heap.

2. This class is not referenced anywhere else

3. The class loader instance of this class has been GCed

Therefore, during the JVM lifecycle, classes loaded by the JVM's own class loader will not
be unloaded. However, classes loaded by our custom class loader may be unloaded.

Just think about it, the JDK's built-in class loader BootstrapClassLoader is

ExtClassLoader responsible AppClassLoader for loading the classes provided by the
JDK, so they (class loader instances) will definitely not be recycled. However, our custom
class loader instances can be recycled, so classes loaded using our custom loader can be
unloaded.

refer to

¢ Deep Understanding of Java Virtual Machine

e Practical Java Virtual Machine

e Chapter 5. Loading, Linking, and Initializing - Java Virtual Machine Specification:
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 9/10

https://github.com/Snailclimb/JavaGuide/issues/662
https://github.com/Snailclimb/JavaGuide/issues/662
https://github.com/guang19
https://github.com/guang19
https://github.com/guang19
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4

9/22/25,11:14 PM Detailed explanation of the class loading process | JavaGuide

JavaGuideEA RS

(g8 FKJavaGuide)
1. 2RBEREE “PDF”RIER LIPDFE R F 1
2, PRESEAESE “FIRE" KW JavaR 3] BERHIR
3. KREEEEE“ARFRAAJavaFFiFMBESE
4, AREREESE“/\RI” K Javalid RE+EE

Recently Updated2025/6/10 15:53

Contributors: SnailClimb , Ryze-Zhao , Shuang Kou , liwenguang , shuang.kou , Shuo Yu, guide ,
hening1 , hailong.sha , 553899811, Joe , vejmhg , Ma Zhaoming , zdkcomeon , Guide , linxuanstar ,
Mr.Hope , paigeman , liangyi , gaohang , scclsy , bedax110 , xiaoxin

Copyright © 2025 Guide

https://javaguide cn/java/jvm/class-loading-process.html#4J 151k 10/10

