1. LRU:

1. Using LinkedHashMap (Simplestin Java)
LinkedHashMap has a constructor that supports access-order, which is perfect for LRU.

java (P Copy code

LinkedHashMap<Integer, String> lruCache = <>(capacity,
@0verride
(Map.Entry<Integer, String> eldest) {
size() > capacity;

+i

How it works:
1. Access order (true):
* Any get() or put() moves the entry to the end of the linked list (most recently used).
2. removeEldestEntry():
s Automatically removes the first entry (least recently used) when the cache exceeds capacity.

3. Iteration:
* Follows LRU order (from least to most recently used).

2. Using HashMap + Doubly Linked List (Manual Implementation)

If you want full control:
+ HashMap: Maps key - Node (for O(1) lookup)
* Doubly Linked List: Maintains usage order
* Head - Most recently used
¢ Tail = Least recently used

2. LinkedHashMap: Double-linked List + HashMap

3. PriorityQueue: Heap

	1. LRU:
	2. LinkedHashMap: Double-linked List + HashMap
	3. PriorityQueue: Heap

