
"What design patterns are used in JDK? What design patterns are used in Spring?" These
two questions are common in interviews.

I searched online for explanations of Spring design patterns, but found that they were all
the same, and most of them were outdated. So, I spent a few days summarizing them
myself.

Due to my limited ability, please feel free to point out any errors in this article. In addition,
due to the limited length of the article, I will only briefly touch upon the design patterns
and some source code interpretation. The main purpose of this article is to review the
design patterns in Spring.

IoC (Inversion of Control) is a crucial concept in Spring. It's not a technology, but
rather a decoupling design philosophy. Its primary purpose is to decouple dependent
objects by leveraging a "third party" (Spring's IoC container)—the IoC container manages
the objects, leaving you to use them—thus reducing the degree of coupling between code.

IoC is a principle, not a pattern. The following patterns (but not limited to)
implement the IoC principle.

Inversion of Control (IoC) and Dependency
Injection (DI)

Detailed explanation of design
patterns in Spring

Guide frame About 4339 words About 14 minutesSpring

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 1/14

https://javaguide.cn/article/

The Spring IoC container is like a factory. When we need to create an object,
we only need to configure the configuration file/annotation, without having to
worry about how the object is created. The IoC container is responsible for creating
objects, wiring them together, configuring them, and handling the entire life cycle of these
objects from creation to their complete destruction.

In a real-world project, if a Service class has hundreds or even thousands of underlying
classes, and you need to instantiate the Service, you might have to figure out the
constructors of all the underlying classes each time, which can be frustrating. With IoC,
you only need to configure it and reference it where needed, which greatly increases project
maintainability and reduces development effort.

Regarding the understanding of Spring IOC, I recommend reading this answer on
Zhihu: https://www.zhihu.com/question/23277575/answer/169698662 , which is
very good.

How do you understand inversion of control? For example: "Object a depends on
object b. When object a needs to use object b, it must create it itself. But when the system
introduces an IOC container, there is no direct connection between object a and object b.
At this time, when object a needs to use object b, we can specify the IOC container to create
an object b and inject it into object a." The process of object a obtaining dependency on
object b changes from active behavior to passive behavior, and control is reversed. This is
the origin of the name inversion of control.

DI (Dependency Inject) is a design pattern for implementing inversion of
control. Dependency injection is the process of passing instance variables into
an object.

Spring uses the factory pattern to create bean objects through BeanFactory or
. ApplicationContext

Comparison between the two:

BeanFactory : Delayed injection (injection only when a bean is used)
ApplicationContext takes up less memory and the program starts faster than .
ApplicationContext : When the container starts, all beans are created at once,

regardless of whether you need them or not. BeanFactory It only provides the most
basic dependency injection support. ApplicationContext It has been extended

Factory Design Pattern

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 2/14

https://www.zhihu.com/question/23277575/answer/169698662
https://www.zhihu.com/question/23277575/answer/169698662

BeanFactory to provide additional features in addition to BeanFactory some existing
features, so ApplicationContext it is generally used by developers.

ApplicationContext Three implementation classes:

1. ClassPathXmlApplication : Treat context files as classpath resources.
2. FileSystemXmlApplication : Load context definition information from an XML file in

the file system.
3. XmlWebApplicationContext : Load context definition information from an XML file in

the Web system.

Example:

In our system, there are some objects that we only need one of, for example: thread pools,
caches, dialog boxes, registry keys, log objects, objects that act as drivers for printers,
graphics cards, etc. In fact, there can only be one instance of such objects. Creating
multiple instances may cause problems such as abnormal program behavior, excessive
resource usage, or inconsistent results.

Benefits of using the singleton pattern :

Singleton Design Pattern

import org.springframework.context.ApplicationContext;
import
org.springframework.context.support.FileSystemXmlApplicationContext;

public class App {
 public static void main(String[] args) {
 ApplicationContext context = new FileSystemXmlApplicationContext(
 "C:/work/IOC
Containers/springframework.applicationcontext/src/main/resources/bean
factory-config.xml");

 HelloApplicationContext obj = (HelloApplicationContext)
context.getBean("helloApplicationContext");
 obj.getMsg();
 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 3/14

For frequently used objects, the time spent on object creation can be omitted, which is a
considerable system overhead for those heavyweight objects.
Since the number of new operations is reduced, the frequency of system memory usage
will also be reduced, which will reduce GC pressure and shorten GC pause time.

The default scope of a bean in Spring is singleton. In addition to the singleton
scope, Spring also has the following scopes for beans:

prototype : A new bean instance is created each time it is retrieved. That is,
getBean() two consecutive Bean instances are obtained.

request (only available for Web applications): Each HTTP request will generate a new
bean (request bean), which is only valid within the current HTTP request.
session (only available for Web applications): Each HTTP request from a new session
will generate a new bean (session bean), which is only valid within the current HTTP
session.
application/global-session (only available for Web applications): Each Web
application creates a bean (application bean) when it starts. This bean is valid only
during the startup time of the current application.
websocket (only available for Web applications): A new bean is created for each
WebSocket session.

Spring ConcurrentHashMap implements the singleton pattern in a special way by
implementing a singleton registry.

The core code for Spring to implement singleton is as follows:

// ConcurrentHashMap
private final Map<String, Object> singletonObjects = new
ConcurrentHashMap<String, Object>(64);

public Object getSingleton(String beanName, ObjectFactory<?>
singletonFactory) {
 Assert.notNull(beanName, "'beanName' must not be null");
 synchronized (this.singletonObjects) {
 //
 Object singletonObject =
this.singletonObjects.get(beanName);
 if (singletonObject == null) {
 //...
 try {
 singletonObject = singletonFactory.getObject();
 }

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 4/14

Does Singleton Bean have thread safety issues?

Most of the time we don't use multithreading in our projects, so few people pay attention to
this issue. Singleton beans have threading issues, mainly because when multiple threads
operate on the same object, there is resource competition.

There are two common solutions:

1. Try to avoid defining mutable member variables in Bean.
2. Define a member variable in the class ThreadLocal and save the required mutable

member variables in ThreadLocal it (a recommended method).

However, most beans are actually stateless (no instance variables) (such as Dao, Service).
In this case, beans are thread-safe.

AOP (Aspect-Oriented Programming) can encapsulate logic or responsibilities that
are not related to the business but are commonly called by business modules (such as
transaction processing, log management, permission control, etc.), thereby reducing

Proxy Design Pattern

Application of proxy mode in AOP

 //...
 //
 addSingleton(beanName, singletonObject);
 }
 return (singletonObject != NULL_OBJECT ?
singletonObject : null);
 }
 }
 //
 protected void addSingleton(String beanName, Object
singletonObject) {
 synchronized (this.singletonObjects) {
 this.singletonObjects.put(beanName,
(singletonObject != null ? singletonObject : NULL_OBJECT));

 }
 }
}

17
18
19
20
21
22
23
24
25
26
27
28

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 5/14

duplicate code in the system, reducing the coupling between modules, and facilitating
future scalability and maintainability.

Spring AOP is based on dynamic proxy. If the object to be proxied implements an interface,
Spring AOP will use JDK Proxy to create a proxy object. For objects that do not
implement the interface, JDK Proxy cannot be used for proxying. At this time, Spring AOP
will use Cglib to generate a subclass of the proxied object as a proxy, as shown in the
following figure:

Of course, you can also use AspectJ. Spring AOP has integrated AspectJ, which is probably
the most complete AOP framework in the Java ecosystem.

By using AOP, we can abstract common functionality and use it directly where needed,
significantly simplifying the code. This also makes it easier to add new features, improving
system scalability. AOP is used in scenarios such as logging and transaction management.

Spring AOP is a runtime enhancement, while AspectJ is a compile-time
enhancement. Spring AOP is based on proxying, while AspectJ is based on bytecode
manipulation.

Spring AOP has integrated AspectJ, which is arguably the most complete AOP framework
in the Java ecosystem. AspectJ is more powerful than Spring AOP, but Spring AOP is
relatively simpler.

What is the difference between Spring AOP and AspectJ
AOP?

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 6/14

If we have relatively few aspects, then the performance difference between the two is not
significant. However, when there are too many aspects, it is better to choose AspectJ,
which is much faster than Spring AOP.

The Template Method pattern is a behavioral design pattern that defines the skeleton of an
algorithm in an operation and defers some steps to subclasses. The Template Method
allows subclasses to redefine the implementation of certain specific steps of an algorithm
without changing its structure.

Template Method

public abstract class Template {
 //
 public final void TemplateMethod(){
 PrimitiveOperation1();
 PrimitiveOperation2();
 PrimitiveOperation3();
 }

 protected void PrimitiveOperation1(){
 //
 }

 //
 protected abstract void PrimitiveOperation2();
 protected abstract void PrimitiveOperation3();

}
public class TemplateImpl extends Template {

 @Override
 public void PrimitiveOperation2() {
 //
 }

 @Override
 public void PrimitiveOperation3() {
 //
 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 7/14

In Spring JdbcTemplate , HibernateTemplate classes that end with "Template" and
other database operations use the Template pattern. Generally, we use inheritance to
implement the Template pattern, but Spring does not use this approach. Instead, it uses
the Callback pattern in conjunction with the Template Method pattern, achieving code
reuse while increasing flexibility.

The Observer pattern is an object-behavioral pattern. It represents a dependency
relationship between objects. When one object changes, all dependent objects react
accordingly. The Spring event-driven model is a classic application of the Observer pattern.
The Spring event-driven model is very useful and can decouple code in many scenarios.
For example, if we need to update the product index every time we add a product, the
Observer pattern can be used to solve this problem.

ApplicationEvent (org.springframework.context Under the package) plays the role
of event, this is an abstract class that inherits java.util.EventObject and implements
java.io.Serializable the interface.

The following events exist by default in Spring, they are all
ApplicationContextEvent implementations of (inherited from
ApplicationContextEvent):

ContextStartedEvent : ApplicationContext Events triggered after startup;
ContextStoppedEvent : ApplicationContext Event triggered after stopping;
ContextRefreshedEvent : ApplicationContext Event triggered after initialization or

refresh is completed;
ContextClosedEvent : ApplicationContext Event triggered after closing.

Observer Pattern

Three roles in Spring's event-driven model

Event Role

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 8/14

ApplicationListener It plays the role of event listener. It is an interface that defines
only one onApplicationEvent() method for handling ApplicationEvent .
ApplicationListener The source code of the interface class is as follows. It can be seen

that the interface definition shows that the events in the interface only need to be
implemented ApplicationEvent . Therefore, in Spring, we only need to implement
ApplicationListener the interface onApplicationEvent() method to complete the

listening event.

ApplicationEventPublisher Acts as an event publisher and is also an interface.

Event Listener Role

Event Publisher Role

package org.springframework.context;
import java.util.EventListener;
@FunctionalInterface
public interface ApplicationListener<E extends ApplicationEvent>
extends EventListener {
 void onApplicationEvent(E var1);
}

@FunctionalInterface
public interface ApplicationEventPublisher {
 default void publishEvent(ApplicationEvent event) {
 this.publishEvent((Object)event);
 }

 void publishEvent(Object var1);
}

java
1
2
3
4
5
6

java
1
2
3
4
5
6
7
8

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 9/14

ApplicationEventPublisher publishEvent() This method of the interface
AbstractApplicationContext is implemented in the class. Reading the implementation

of this method, you will find that the event is actually
ApplicationEventMulticaster broadcasted through. There are too many details to

analyze here. I may write a separate article to mention it later.

1. Define an event: implement an inheritance ApplicationEvent and write the
corresponding constructor;

2. Define an event listener: implement ApplicationListener the interface and override
onApplicationEvent() the method;

3. Use event publisher to publish messages: You can publish messages through the method
ApplicationEventPublisher of . publishEvent()

Example:

Summary of Spring's event flow

// , ApplicationEvent
public class DemoEvent extends ApplicationEvent{
 private static final long serialVersionUID = 1L;

 private String message;

 public DemoEvent(Object source,String message){
 super(source);
 this.message = message;
 }

 public String getMessage() {
 return message;
 }

// , ApplicationListener
onApplicationEvent()
@Component
public class DemoListener implements ApplicationListener<DemoEvent>
{

 // onApplicationEvent
 @Override
 public void onApplicationEvent(DemoEvent event) {

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 10/14

DemoPublisher When the method of is called publish() , for example
demoPublisher.publish(" ") , the console will print: .

Adapter Pattern converts one interface into another interface that the client expects. The
adapter pattern enables classes with incompatible interfaces to work together.

We know that the implementation of Spring AOP is based on the proxy mode, but the
enhancement or advice of Spring AOP uses the adapter mode, and the related interface is
AdvisorAdapter .

Common types of Advice include: BeforeAdvice (before the target method is called, pre-
advice), AfterAdvice (after the target method is called, post-advice),
AfterReturningAdvice (after the target method is executed, before return), etc. Each

type of Advice has a corresponding interceptor: MethodBeforeAdviceInterceptor ,
AfterReturningAdviceInterceptor , ThrowsAdviceInterceptor etc.

Adapter Pattern

Adapter pattern in Spring AOP

 String msg = event.getMessage();
 System.out.println(" "+msg);
 }

}
// ApplicationEventPublisher publishEvent()

@Component
public class DemoPublisher {

 @Autowired
 ApplicationContext applicationContext;

 public void publish(String message){
 //
 applicationContext.publishEvent(new DemoEvent(this,
message));
 }
}

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 11/14

Spring's predefined notifications must be adapted to MethodInterceptor objects of the
interface (method interceptor) type through the corresponding adapter (for example,
MethodBeforeAdviceAdapter by calling getInterceptor the method,
MethodBeforeAdvice adapting to MethodBeforeAdviceInterceptor).

In Spring MVC, the request is invoked and parsed DispatcherServlet based on the
request information . Once the corresponding controller is found , the adapter begins
processing. The adapter implementation class is used to adapt the target class, acting as
the target
class. HandlerMapping Handler Handler Controller HandlerAdapter HandlerAdap
ter Controller

Why use the Adapter pattern in Spring MVC?

Controller There are many types of Spring MVC , and different types
Controller handle requests in different ways. If you don't use the adapter pattern,
DispatcherServlet you can directly obtain the corresponding type Controller and

make your own judgment, as shown in the following code:

If we add another Controller type, we have to add another line of judgment statement to
the above code. This form makes the program difficult to maintain and violates the open-
closed principle in the design pattern - open for extension and closed for modification.

The Decorator pattern allows you to dynamically add additional attributes or behaviors to
an object. Compared to inheritance, the Decorator pattern is more flexible. Simply put,
when we need to modify existing functionality but don't want to modify the original code
directly, we can design a Decorator to wrap around the original code. The Decorator
pattern is used extensively in the JDK, such as InputStream in families . Subclasses

Adapter Pattern in Spring MVC

Decorator pattern

if(mappedHandler.getHandler() instanceof MultiActionController){
 ((MultiActionController)mappedHandler.getHandler()).xxx
}else if(mappedHandler.getHandler() instanceof XXX){
 ...
}else if(...){
 ...
}

java
1
2
3
4
5
6
7

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 12/14

InputStream within a class, such as FileInputStream (reading files) and (adding cache
to significantly speed up file reading) , extend functionality without modifying the
code. BufferedInputStream InputStream

When configuring a DataSource in Spring, the DataSource may refer to different databases
and data sources. Can we dynamically switch between different data sources based on
customer needs while minimizing code changes to the original class? This is where the
decorator pattern comes in (I don't quite understand the specific principles behind this).
The wrapper pattern used in Spring contains "<pre>" Wrapper or " <pre>" in the class
name Decorator . These classes essentially dynamically add additional responsibilities to
an object.

What design patterns are used in Spring Framework?

Factory Design Pattern : Spring uses factory pattern to BeanFactory create
ApplicationContext bean objects.

Proxy design pattern : implementation of Spring AOP functionality.
Singleton design pattern : Beans in Spring are singletons by default.
Template method pattern : In Spring jdbcTemplate , hibernateTemplate classes
that end with Template and other classes that operate on the database use the template
pattern.
Wrapper Design Pattern : Our project needs to connect to multiple databases, and
different customers may access different databases as needed during each visit. This
pattern allows us to dynamically switch between different data sources based on
customer needs.

Summarize

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 13/14

Observer pattern: Spring event-driven model is a classic application of the observer
pattern.
Adapter pattern : Spring AOP enhancement or advice uses the adapter pattern, and
spring MVC also uses the adapter pattern adaptation Controller .
…

Spring Technology Insider
https://blog.eduonix.com/java-programming-2/learn-design-patterns-used-spring-
framework/
https://www.tutorialsteacher.com/ioc/inversion-of-control
https://design-
patterns.readthedocs.io/zh_CN/latest/behavioral_patterns/observer.html
https://juejin.im/post/5a8eb261f265da4e9e307230
https://juejin.im/post/5ba28986f265da0abc2b6084

Recently Updated2025/7/27 10:31
Contributors: SnailClimb , Kou Shuang , wjch , ipofss , guide , Jarvan-Song , wangtong , kuluqi163 ,

Guide , Erzbir , Mr.Hope , smy1999

refer to

Copyright © 2025 Guide

9/22/25, 4:01 PM Spring design patterns explained | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html#spring-mvc-中的适配器模式 14/14

https://blog.eduonix.com/java-programming-2/learn-design-patterns-used-spring-framework/
https://blog.eduonix.com/java-programming-2/learn-design-patterns-used-spring-framework/
https://blog.eduonix.com/java-programming-2/learn-design-patterns-used-spring-framework/
https://www.tutorialsteacher.com/ioc/inversion-of-control
https://www.tutorialsteacher.com/ioc/inversion-of-control
https://design-patterns.readthedocs.io/zh_CN/latest/behavioral_patterns/observer.html
https://design-patterns.readthedocs.io/zh_CN/latest/behavioral_patterns/observer.html
https://design-patterns.readthedocs.io/zh_CN/latest/behavioral_patterns/observer.html
https://juejin.im/post/5a8eb261f265da4e9e307230
https://juejin.im/post/5a8eb261f265da4e9e307230
https://juejin.im/post/5ba28986f265da0abc2b6084
https://juejin.im/post/5ba28986f265da0abc2b6084

