
1. Garbage Collection Algorithms

1. Mark-and-Sweep Algorithm

●​ Process:​

1.​Mark phase: Traverse the object graph starting from
GC Roots (local variables, static fields, etc.), mark all
reachable (alive) objects.​

2.​Sweep phase: Scan heap, reclaim (delete) all
unmarked objects.​

●​ Pros: Simple, doesn’t need moving objects.​

●​ Cons: Causes memory fragmentation, which can slow
down future allocations.​

2. Replication (Copying) Algorithm

●​ Process:​

○​ Divide memory into two equal semi-spaces.​

○​ Allocate objects in one space.​

○​ When GC happens, copy all live objects to the other
space and clean up the first one.​

●​ Pros: Eliminates fragmentation, allocation is fast
(sequential).​

●​ Cons: Wastes half of the memory, copying overhead when
many live objects.​

3. Mark-Clear (Mark-Compact) Algorithm

●​ Process:​

○​ First mark live objects.​

○​ Then instead of sweeping, move live objects together
(compact) to eliminate fragmentation.​

●​ Pros: Solves fragmentation problem of mark-sweep.​

●​ Cons: Higher overhead because objects must be moved.​

4. Generational Collection Algorithm

Idea: Objects have different lifetimes, so use different algorithms
for different generations.

●​ Young Generation: Most objects die quickly → use copying
algorithm (fast).

●​ Old Generation: Objects live long → use mark-sweep or
mark-compact.​

●​ Pros: Matches real-world object lifetime patterns, improves
efficiency.​

2. Garbage Collectors in HotSpot JVM

1. Serial Collector

●​ Single-threaded collector.​

●​ Uses stop-the-world (pauses all application threads).​

●​ Young gen: Copying algorithm.​

●​ Old gen: Mark-Compact.​

●​ Use case: Single-core CPU, small heap.​

2. ParNew Collector

●​ Multi-threaded version of Serial collector.​

●​ Young gen: Copying algorithm.​

●​ Often used with CMS for old generation.​

3. Parallel Scavenge Collector

●​ Focused on throughput (maximize work done vs. GC time).​

●​ Young gen: Copying algorithm, multi-threaded.​

●​ Has adaptive tuning: JVM automatically adjusts GC
behavior for performance.​

●​ Use case: Background tasks, batch jobs.​

4. Serial Old Collector

●​ Old generation version of Serial collector.​

●​ Uses mark-compact.​

●​ Backup for CMS when concurrent collection fails.​

5. Parallel Old Collector

●​ Old gen companion to Parallel Scavenge.​

●​ Multi-threaded mark-compact.​

●​ Good for throughput-focused applications.​

6. CMS (Concurrent Mark-Sweep) Collector:

●​ Old generation collector.​

●​ Aims to reduce pause time.​

●​ Steps:​

1.​Initial mark (short stop-the-world).​

2.​Concurrent mark (application still running).​

3.​Remark (short stop-the-world).​

4.​Concurrent sweep.​

●​ Pros: Low pause time.​

●​ Cons: Memory fragmentation, CPU overhead.​

7. G1 (Garbage-First) Collector

●​ Splits heap into regions instead of fixed young/old.​

●​ Collects regions with most garbage first.​

●​ Uses mark-compact (with region-based compaction).​

●​ Pros: Predictable pause time, avoids fragmentation.​

●​ Default GC in modern JDK (since Java 9).​

8. ZGC (Z Garbage Collector) (Almost all GC work is
concurrent with main program)

●​ Low-latency GC (pause times < 10ms, regardless of heap
size).​

●​ Works with huge heaps (TB scale).​

●​ Uses colored pointers and load barriers to manage
memory concurrently.​

●​ Pros: Extremely short pause times, scales well.​

●​ Cons: Higher CPU/memory overhead compared to simpler
GCs.​

✅ Summary Table

GC
Algorithm

Used
In

Pros Cons

Mark-Swe
ep

Old
gen

Simple Fragmentation

Copying Young
gen

Fast, no
fragmentation

Wastes
memory

Mark-Co
mpact

Old
gen

No
fragmentation

Slower (object
moving)

Generatio
nal

All Efficient,
practical

Complexity

Collector Target Characteristics

Serial Small
heap

Single-threaded,
simple

ParNew Young
gen

Multi-threaded
Serial

Parallel
Scavenge

Young
gen

Throughput-orient
ed

Serial Old Old gen Single-threaded,
backup

Parallel Old Old gen Multi-threaded,
throughput

CMS Old gen Low latency,
concurrent

G1 Whole
heap

Region-based,
balanced

ZGC Whole
heap

Ultra-low pause,
scalable

	1. Garbage Collection Algorithms
	1. Mark-and-Sweep Algorithm
	●​Process:​
	1.​Mark phase: Traverse the object graph starting from GC Roots (local variables, static fields, etc.), mark all reachable (alive) objects.​
	2.​Sweep phase: Scan heap, reclaim (delete) all unmarked objects.​
	●​Pros: Simple, doesn’t need moving objects.​
	●​Cons: Causes memory fragmentation, which can slow down future allocations.​
	
	2. Replication (Copying) Algorithm
	●​Process:​
	○​Divide memory into two equal semi-spaces.​
	○​Allocate objects in one space.​
	○​When GC happens, copy all live objects to the other space and clean up the first one.​
	●​Pros: Eliminates fragmentation, allocation is fast (sequential).​
	●​Cons: Wastes half of the memory, copying overhead when many live objects.​
	
	
	
	
	
	
	
	
	
	3. Mark-Clear (Mark-Compact) Algorithm
	●​Process:​
	○​First mark live objects.​
	○​Then instead of sweeping, move live objects together (compact) to eliminate fragmentation.​
	●​Pros: Solves fragmentation problem of mark-sweep.​
	●​Cons: Higher overhead because objects must be moved.​
	
	4. Generational Collection Algorithm
	Idea: Objects have different lifetimes, so use different algorithms for different generations.
	●​Young Generation: Most objects die quickly → use copying algorithm (fast).
	●​Old Generation: Objects live long → use mark-sweep or mark-compact.​
	●​Pros: Matches real-world object lifetime patterns, improves efficiency.​
	
	

	2. Garbage Collectors in HotSpot JVM
	1. Serial Collector
	●​Single-threaded collector.​
	●​Uses stop-the-world (pauses all application threads).​
	●​Young gen: Copying algorithm.​
	●​Old gen: Mark-Compact.​
	●​Use case: Single-core CPU, small heap.​
	
	
	
	
	
	2. ParNew Collector
	●​Multi-threaded version of Serial collector.​
	●​Young gen: Copying algorithm.​
	●​Often used with CMS for old generation.​
	
	3. Parallel Scavenge Collector
	●​Focused on throughput (maximize work done vs. GC time).​
	●​Young gen: Copying algorithm, multi-threaded.​
	●​Has adaptive tuning: JVM automatically adjusts GC behavior for performance.​
	●​Use case: Background tasks, batch jobs.​
	
	
	
	
	
	4. Serial Old Collector
	●​Old generation version of Serial collector.​
	●​Uses mark-compact.​
	●​Backup for CMS when concurrent collection fails.​
	
	5. Parallel Old Collector
	●​Old gen companion to Parallel Scavenge.​
	●​Multi-threaded mark-compact.​
	●​Good for throughput-focused applications.​
	
	6. CMS (Concurrent Mark-Sweep) Collector:
	●​Old generation collector.​
	●​Aims to reduce pause time.​
	●​Steps:​
	1.​Initial mark (short stop-the-world).​
	2.​Concurrent mark (application still running).​
	3.​Remark (short stop-the-world).​
	4.​Concurrent sweep.​
	●​Pros: Low pause time.​
	●​Cons: Memory fragmentation, CPU overhead.​
	
	7. G1 (Garbage-First) Collector
	●​Splits heap into regions instead of fixed young/old.​
	●​Collects regions with most garbage first.​
	●​Uses mark-compact (with region-based compaction).​
	●​Pros: Predictable pause time, avoids fragmentation.​
	●​Default GC in modern JDK (since Java 9).​
	
	
	
	8. ZGC (Z Garbage Collector) (Almost all GC work is concurrent with main program)
	●​Low-latency GC (pause times < 10ms, regardless of heap size).​
	●​Works with huge heaps (TB scale).​
	●​Uses colored pointers and load barriers to manage memory concurrently.​
	●​Pros: Extremely short pause times, scales well.​
	●​Cons: Higher CPU/memory overhead compared to simpler GCs.​
	
	✅ Summary Table
	GC Algorithm
	Used In
	Pros
	Cons
	Mark-Sweep
	Old gen
	Simple
	Fragmentation
	Copying
	Young gen
	Fast, no fragmentation
	Wastes memory
	Mark-Compact
	Old gen
	No fragmentation
	Slower (object moving)
	Generational
	All
	Efficient, practical
	Complexity
	
	Collector
	Target
	Characteristics
	Serial
	Small heap
	Single-threaded, simple
	ParNew
	Young gen
	Multi-threaded Serial
	Parallel Scavenge
	Young gen
	Throughput-oriented
	Serial Old
	Old gen
	Single-threaded, backup
	Parallel Old
	Old gen
	Multi-threaded, throughput
	CMS
	Old gen
	Low latency, concurrent
	G1
	Whole heap
	Region-based, balanced
	ZGC
	Whole heap
	Ultra-low pause, scalable
	

