
These commands are in the bin directory under the JDK installation directory:

jps (JVM Process Status): Similar to the UNIX ps command. Used to view
information such as the startup class, input parameters, and Java virtual machine
parameters of all Java processes;
jstat JVM Statistics Monitoring Tool: used to collect various operating data of the

HotSpot virtual machine;
jinfo (Configuration Info for Java): Configuration Info for Java, displays virtual

machine configuration information;
jmap (Memory Map for Java) : Generate heap dump snapshot;
jhat JVM Heap Dump Browser: Used to analyze heapdump files. It sets up an

HTTP/HTML server so that users can view the analysis results in a browser. Jhat was
removed in JDK9.
jstack (Stack Trace for Java): Generates a thread snapshot of the virtual machine at

the current moment. The thread snapshot is a collection of method stacks being
executed by each thread in the current virtual machine.

jps The (JVM Process Status) command is similar to the UNIX ps command.

jps : Displays the main class name of the virtual machine execution and the local virtual
machine unique ID (LVMID) of these processes. jps -q : Outputs only the local virtual
machine unique ID of the process.

JDK command-line tools

jps : View all Java processes

Summary of JDK monitoring and
troubleshooting tools

Guide Java About 3224 words About 11 minutesJVM

C:\Users\SnailClimb>jps
7360 NettyClient2
17396
7972 Launcher
16504 Jps
17340 NettyServer

powershell
1
2
3
4
5
6

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 1/13

https://javaguide.cn/article/

jps -l : Output the full name of the main class. If the process executes a Jar package,
output the Jar path.

jps -v : Output the JVM parameters when the virtual machine process is started.

jps -m : Output the parameters passed to the Java process main() function.

jstat (JVM Statistics Monitoring Tool) is a command-line tool used to monitor various
virtual machine (VM) operating status information. It displays class information, memory
usage, garbage collection, and JIT compilation statistics for local or remote VM processes
(requires RMI support on the remote host). On servers without a GUI and offering only a
plain text console, jstat is the preferred tool for locating VM performance issues during
runtime.

jstat Command usage format:

For example, jstat -gc -h3 31736 1000 10 to analyze the GC situation of process ID
31736, print a record every 1000ms, stop after printing 10 times, and print the indicator
header after every 3 lines.

Common options are as follows:

jstat -class vmid : Display ClassLoader related information;
jstat -compiler vmid : Displays information related to JIT compilation;
jstat -gc vmid : Displays GC-related heap information;
jstat -gccapacity vmid : Displays the capacity and usage of each generation;
jstat -gcnew vmid : Display new generation information;
jstat -gcnewcapcacity vmid : Displays the size and usage of the new generation;

jstat : Monitor various operating status information of
virtual machines

C:\Users\SnailClimb>jps -l
7360 firstNettyDemo.NettyClient2
17396
7972 org.jetbrains.jps.cmdline.Launcher
16492 sun.tools.jps.Jps
17340 firstNettyDemo.NettyServer

jstat -<option> [-t] [-h<lines>] <vmid> [<interval> [<count>]]

powershell
1
2
3
4
5
6

powershell
1

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 2/13

jstat -gcold vmid : Displays statistics on the behavior of the old generation and the
permanent generation. Starting from JDK 1.8, this option only shows the old generation
because the permanent generation has been removed.
jstat -gcoldcapacity vmid : Displays the size of the old generation;
jstat -gcpermcapacity vmid : Displays the permanent generation size. Starting from

JDK 1.8, this option no longer exists because the permanent generation has been
removed.
jstat -gcutil vmid : Display garbage collection information;

In addition, by adding -t parameters, you can add a Timestamp column to the output
information to show the running time of the program.

jinfo vmid : Output all parameters and system properties of the current JVM process
(the first part is the system properties, the second part is the JVM parameters).

jinfo -flag name vmid : Outputs the specific value of the parameter with the
corresponding name. For example, outputs MaxHeapSize and checks whether the current
JVM process has enabled GC log printing (-XX:PrintGCDetails : detailed GC log mode,
both of which are disabled by default).

Using jinfo, you can dynamically modify JVM parameters without restarting the virtual
machine. This is especially useful in online environments. See the following example:

jinfo -flag [+|-]name vmid Enable or disable the parameter with the corresponding
name.

jinfo : View and adjust virtual machine parameters in
real time

C:\Users\SnailClimb>jinfo -flag MaxHeapSize 17340
-XX:MaxHeapSize=2124414976
C:\Users\SnailClimb>jinfo -flag PrintGC 17340
-XX:-PrintGC

C:\Users\SnailClimb>jinfo -flag PrintGC 17340
-XX:-PrintGC

C:\Users\SnailClimb>jinfo -flag +PrintGC 17340

C:\Users\SnailClimb>jinfo -flag PrintGC 17340
-XX:+PrintGC

powershell
1
2
3
4

powershell
1
2
3
4
5
6
7

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 3/13

jmap The Memory Map for Java command is used to generate a heap dump snapshot. To
jmap obtain a Java heap dump without the Memory Map for Java command, you can use
“-XX:+HeapDumpOnOutOfMemoryError” the Memory Map for Java command. This

command will cause the VM to automatically generate a dump file after an OOM exception
occurs. On Linux, you kill -3 can also obtain a dump file by sending a process exit
signal.

jmap The function of is not only to obtain the dump file, it can also query the detailed
information of the finalizer execution queue, Java heap and permanent generation, such as
space usage, which collector is currently used, etc. Like jinfo , jmap many functions are
also limited on the Windows platform.

Example: Output a heap snapshot of a specified application to the desktop. This heap file
can then be analyzed using tools such as jhat and Visual VM.

jhat Used to analyze heapdump files, it will establish an HTTP/HTML server so that
users can view the analysis results on the browser.

jmap : Generate a heap dump snapshot

jhat : Analyze heapdump files

C:\Users\SnailClimb>jmap -
dump:format=b,file=C:\Users\SnailClimb\Desktop\heap.hprof 17340
Dumping heap to C:\Users\SnailClimb\Desktop\heap.hprof ...
Heap dump file created

C:\Users\SnailClimb>jhat C:\Users\SnailClimb\Desktop\heap.hprof
Reading from C:\Users\SnailClimb\Desktop\heap.hprof...
Dump file created Sat May 04 12:30:31 CST 2019
Snapshot read, resolving...
Resolving 131419 objects...
Chasing references, expect 26 dots..........................
Eliminating duplicate references..........................
Snapshot resolved.
Started HTTP server on port 7000
Server is ready.

powershell
1
2
3

powershell
1
2
3
4
5
6
7
8
9
10

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 4/13

Visit http://localhost:7000/

Note⚠️ : JDK9 removes jhat (JEP 241: Remove the jhat Tool). You can use its
replacement Eclipse Memory Analyzer Tool (MAT) and VisualVM, which is also officially
recommended.

jstack The Stack Trace for Java command generates a thread snapshot of the current
moment in the virtual machine. A thread snapshot is a collection of the method stacks
currently being executed by each thread in the virtual machine.

The purpose of generating thread snapshots is to identify the cause of prolonged thread
pauses, such as inter-thread deadlocks, infinite loops, and long waits for external resource
requests. By jstack viewing the call stack of each thread when a thread pauses, you can
determine what the unresponsive thread is doing in the background or what resource it is
waiting for.

The following code shows a thread deadlock. We will use jstack the
command to check for deadlocks, output deadlock information, and find the
deadlocked thread.

jstack : Generate a thread snapshot of the virtual
machine at the current moment

public class DeadLockDemo {
 private static Object resource1 = new Object();//资源 1
 private static Object resource2 = new Object();//资源 2

 public static void main(String[] args) {
 new Thread(() -> {
 synchronized (resource1) {
 System.out.println(Thread.currentThread() + "get
resource1");
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread() +
"waiting get resource2");
 synchronized (resource2) {
 System.out.println(Thread.currentThread() +
"get resource2");

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 5/13

http://localhost:7000/
http://localhost:7000/
https://openjdk.org/jeps/241
https://openjdk.org/jeps/241

Output

Thread A acquires the monitor lock on resource1 using synchronized (resource1).
Thread.sleep(1000); Thread A then sleeps for one second to allow thread B to execute

and acquire the monitor lock on resource2. After Thread A and Thread B finish their sleep
cycles, they both attempt to acquire each other's resources. As a result, the two threads are
stuck waiting for each other, creating a deadlock.

Analysis by jstack command:

 }
 }
 }, "线程 1").start();

 new Thread(() -> {
 synchronized (resource2) {
 System.out.println(Thread.currentThread() + "get
resource2");
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread() +
"waiting get resource1");
 synchronized (resource1) {
 System.out.println(Thread.currentThread() +
"get resource1");
 }
 }
 }, "线程 2").start();
 }
}

Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

plain
1
2
3
4

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 6/13

Part of the output is as follows:

C:\Users\SnailClimb>jps
13792 KotlinCompileDaemon
7360 NettyClient2
17396
7972 Launcher
8932 Launcher
9256 DeadLockDemo
10764 Jps
17340 NettyServer

C:\Users\SnailClimb>jstack 9256

Found one Java-level deadlock:
=============================
"线程 2":
 waiting to lock monitor 0x000000000333e668 (object
0x00000000d5efe1c0, a java.lang.Object),
 which is held by "线程 1"
"线程 1":
 waiting to lock monitor 0x000000000333be88 (object
0x00000000d5efe1d0, a java.lang.Object),
 which is held by "线程 2"

Java stack information for the threads listed above:
===
"线程 2":
 at DeadLockDemo.lambda$main$1(DeadLockDemo.java:31)
 - waiting to lock <0x00000000d5efe1c0> (a java.lang.Object)
 - locked <0x00000000d5efe1d0> (a java.lang.Object)
 at DeadLockDemo$$Lambda$2/1078694789.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:748)
"线程 1":
 at DeadLockDemo.lambda$main$0(DeadLockDemo.java:16)
 - waiting to lock <0x00000000d5efe1d0> (a java.lang.Object)
 - locked <0x00000000d5efe1c0> (a java.lang.Object)
 at DeadLockDemo$$Lambda$1/1324119927.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:748)

Found 1 deadlock.

powershell
1
2
3
4
5
6
7
8
9
10
11

powershell
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 7/13

You can see that jstack the command has helped us find the specific information of the
deadlocked thread.

JConsole is a JMX-based visual monitoring and management tool. It easily monitors the
memory usage of Java processes on local and remote servers. You can jconsole start it by
typing a command in the console or by finding it in the bin directory under the JDK
directory jconsole.exe and double-clicking it.

If you need to use JConsole to connect to a remote process, you can add the following
parameters when starting the remote Java program:

JDK Visual Analysis Tool

JConsole: Java Monitoring and Management Console

Connecting to Jconsole

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 8/13

When connecting using JConsole, the remote process address is as follows:

JConsole can display detailed information about current memory usage. This includes not
only overall heap and non-heap memory usage, but also detailed information about the
usage of Eden and survivor areas, as shown in the following figure.

Click the "Perform GC (G)" button on the right to force the application to perform a Full
GC.

View Java Program Overview

Memory Monitoring

-Djava.rmi.server.hostname=外网访问 ip 地址
-Dcom.sun.management.jmxremote.port=60001 //监控的端口号
-Dcom.sun.management.jmxremote.authenticate=false //关闭认证
-Dcom.sun.management.jmxremote.ssl=false

外网访问 ip 地址:60001

properties
1
2
3
4

plain
1

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 9/13

Minor GC : refers to the garbage collection action that occurs in the new generation.
Minor GC is very frequent and the recovery speed is generally faster.
Old generation GC (Major GC/Full GC) : refers to the GC that occurs in the old
generation. A Major GC is often accompanied by at least one Minor GC (not always).
The speed of a Major GC is generally more than 10 times slower than that of a Minor
GC.

It is similar to the command we talked about earlier jstack , but this one is visual.

There is a "Detect Deadlock (D)" button at the bottom. Clicking this button will
automatically find the deadlocked threads and their detailed information for you.

Thread Monitoring

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 10/13

VisualVM provides detailed information about Java applications running on the Java
Virtual Machine (JVM). Within VisualVM's graphical user interface, you can quickly and
easily view information about multiple Java applications. Visit the Visual VM official
website: https://visualvm.github.io/ . Visual VM documentation:
https://visualvm.github.io/documentation.html .

The following passage is excerpted from "In-depth Understanding of Java Virtual
Machine".

VisualVM (All-in-One Java Troubleshooting Tool) is the most powerful runtime
monitoring and troubleshooting tool released with the JDK to date. The official
description of VisualVM as "All-in-One" indicates that, in addition to runtime
monitoring and troubleshooting, it also offers a wide range of other features, such as
performance analysis (profiling). VisualVM's performance analysis capabilities are
comparable to those of professional, paid profiling tools like JProfiler and YourKit.
Furthermore, VisualVM offers a significant advantage: it does not require the monitored

Visual VM: All-in-one troubleshooting tool

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 11/13

https://visualvm.github.io/
https://visualvm.github.io/
https://visualvm.github.io/documentation.html
https://visualvm.github.io/documentation.html

program to run as a dedicated agent, resulting in minimal impact on the actual
application performance, making it suitable for direct use in production environments.
This advantage is unmatched by tools like JProfiler and YourKit.

VisualVM is developed based on the NetBeans platform, so it has the feature of plug-in
extension from the beginning. With plug-in extension support, VisualVM can do the
following:

Displays virtual machine processes and their configuration and environment
information (jps, jinfo).
Monitor the application's CPU, GC, heap, method area, and thread information (jstat,
jstack).
dump and analyze heap dump snapshots (jmap, jhat).
Method-level program performance analysis to find the methods that are called the
most and have the longest running time.
Offline program snapshot: Collects program runtime configuration, thread dump,
memory dump and other information to create a snapshot, which can be sent to
developers for bug feedback.
Endless possibilities with other plugins...

I won’t go into detail about how to use VisualVM here. If you want to learn more, you can
read:

https://visualvm.github.io/documentation.html
https://www.ibm.com/developerworks/cn/java/j-lo-visualvm/index.html

MAT (Memory Analyzer Tool) is a fast, convenient, and powerful offline JVM heap
memory analysis tool. It displays runtime heap dump snapshots (also available for analysis
during normal operation) recorded during JVM exceptions, helping to locate memory leaks
or optimize high-memory consumption logic.

When encountering OOM and GC problems, I usually choose to use MAT to analyze the
dump file. This is also the most common application scenario of this tool.

For a detailed introduction to MAT, I recommend the following two articles, which are very
well written:

In-depth explanation and practice of JVM memory analysis tool MAT - Getting Started

MAT: Memory Analyzer Tool

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 12/13

https://visualvm.github.io/documentation.html
https://visualvm.github.io/documentation.html
https://www.ibm.com/developerworks/cn/java/j-lo-visualvm/index.html
https://www.ibm.com/developerworks/cn/java/j-lo-visualvm/index.html
https://juejin.cn/post/6908665391136899079
https://juejin.cn/post/6908665391136899079
https://juejin.cn/post/6908665391136899079

In-depth explanation and practice of JVM memory analysis tool MAT - Advanced
Edition

Recently Updated2024/4/19 14:23
Contributors: SnailClimb , JKSAGE , Shuang Kou ,何正海, shuang.kou , guide , anaer , Erzbir , Guide ,

Mr.Hope , paigeman

Copyright © 2025 Guide

9/22/25, 11:33 PM Summary of JDK monitoring and troubleshooting tools | JavaGuide

https://javaguide.cn/java/jvm/jdk-monitoring-and-troubleshooting-tools.html#jmap-生成堆转储快照 13/13

https://juejin.cn/post/6911624328472133646
https://juejin.cn/post/6911624328472133646
https://juejin.cn/post/6911624328472133646

