
 
 

1. Reorder the code (make it parallel and faster) 
 

 
 



2. JMM 

The data sync only when the thread writing from its own Thread 
Memory -> Main Memory  

=> Maybe it cause the not visibility at the same time. 

 
 
 

3. Happens-Before Relationship 

The JMM defines a set of happens-before rules that ensure 
visibility and ordering. If one action happens-before another, then: 

●​ The first action’s result is visible to the second, and​
 

●​ Reordering between them is not allowed. 

 



4. Atomicity, Visibility, Ordering 

●​ Atomicity → indivisible operations (e.g., reads/writes to 
int/boolean are atomic, but long/double weren’t atomic 
before Java 5).​
 

●​ Visibility → when one thread updates a value, other threads 
see it => In Main Memory 

 

●​ Ordering → the order of execution seen by one thread 
matches the intended order => Do not reorder the code. 

 
 

 

5. Why long and double were not atomic (before 
Java 5) => after Java 5 it is atomic 

●​ On 32-bit JVMs, a long (64-bit) or double (64-bit) doesn’t 
fit into a single machine word.​
 

●​ So, a read/write might need two separate 32-bit 
operations.​
 

 

 



6. How synchronized ensures atomicity 

1.​Mutual exclusion (atomicity)​
 

○​ Only one thread at a time can execute inside a 
synchronized block on the same object.​
 

○​ That prevents race conditions.​
 

2.​Visibility​
 

○​ When a thread exits a synchronized block, it 
flushes changes from its working memory to main 
memory.​
 

○​ When another thread enters, it invalidates its cache 
and reads the latest values from main memory. 

=> The data is always up to date in main memory. 
 

7. How AtomicInteger ensures atomicity (CAS 
giống khoá lạc quan) 

AtomicInteger (and other classes in 
java.util.concurrent.atomic) use CAS (Compare-And-Swap) — a 
low-level lock-free CPU instruction. 

How CAS works: 



1.​Read the current value from memory.​
 

2.​Compare it with the expected value.​
 

3.​If it’s the same, swap it with the new value (in one atomic 
CPU instruction).​
 

4.​If another thread already changed it, retry (loop until 
success).​
 

 

 

 

 

 

 

 

 

 



8. How reordering improves performance 

1. Instruction-level parallelism (ILP) 

Modern CPUs have multiple execution units (ALU, FPU, 
load/store units).​
 If instructions are independent, the CPU can run them in 
parallel. 

Example: 

int a = 1;   // store to register R1 

int b = 2;   // store to register R2 

int c = a + b; // needs R1, R2 

 

●​ The assignment a = 1 and b = 2 don’t depend on each 
other.​
 

●​ CPU can reorder or issue both at once to different 
execution units.​
 

●​ Only c = a + b must wait until both are ready.​
 

This is called out-of-order execution — CPU schedules 
instructions to keep pipelines full. 
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