

1. Reorder the code (make it parallel and faster)

2. JMM

The data sync only when the thread writing from its own Thread
Memory -> Main Memory

=> Maybe it cause the not visibility at the same time.

3. Happens-Before Relationship

The JMM defines a set of happens-before rules that ensure
visibility and ordering. If one action happens-before another, then:

●​ The first action’s result is visible to the second, and​

●​ Reordering between them is not allowed.

4. Atomicity, Visibility, Ordering

●​ Atomicity → indivisible operations (e.g., reads/writes to
int/boolean are atomic, but long/double weren’t atomic
before Java 5).​

●​ Visibility → when one thread updates a value, other threads
see it => In Main Memory

●​ Ordering → the order of execution seen by one thread
matches the intended order => Do not reorder the code.

5. Why long and double were not atomic (before
Java 5) => after Java 5 it is atomic

●​ On 32-bit JVMs, a long (64-bit) or double (64-bit) doesn’t
fit into a single machine word.​

●​ So, a read/write might need two separate 32-bit
operations.​

6. How synchronized ensures atomicity

1.​Mutual exclusion (atomicity)​

○​ Only one thread at a time can execute inside a
synchronized block on the same object.​

○​ That prevents race conditions.​

2.​Visibility​

○​ When a thread exits a synchronized block, it
flushes changes from its working memory to main
memory.​

○​ When another thread enters, it invalidates its cache
and reads the latest values from main memory.

=> The data is always up to date in main memory.

7. How AtomicInteger ensures atomicity (CAS
giống khoá lạc quan)

AtomicInteger (and other classes in
java.util.concurrent.atomic) use CAS (Compare-And-Swap) — a
low-level lock-free CPU instruction.

How CAS works:

1.​Read the current value from memory.​

2.​Compare it with the expected value.​

3.​If it’s the same, swap it with the new value (in one atomic
CPU instruction).​

4.​If another thread already changed it, retry (loop until
success).​

8. How reordering improves performance

1. Instruction-level parallelism (ILP)

Modern CPUs have multiple execution units (ALU, FPU,
load/store units).​
 If instructions are independent, the CPU can run them in
parallel.

Example:

int a = 1; // store to register R1

int b = 2; // store to register R2

int c = a + b; // needs R1, R2

●​ The assignment a = 1 and b = 2 don’t depend on each
other.​

●​ CPU can reorder or issue both at once to different
execution units.​

●​ Only c = a + b must wait until both are ready.​

This is called out-of-order execution — CPU schedules
instructions to keep pipelines full.

	1. Reorder the code (make it parallel and faster)
	2. JMM
	The data sync only when the thread writing from its own Thread Memory -> Main Memory
	=> Maybe it cause the not visibility at the same time.

	3. Happens-Before Relationship
	The JMM defines a set of happens-before rules that ensure visibility and ordering. If one action happens-before another, then:
	●​The first action’s result is visible to the second, and​
	●​Reordering between them is not allowed.

	4. Atomicity, Visibility, Ordering
	●​Atomicity → indivisible operations (e.g., reads/writes to int/boolean are atomic, but long/double weren’t atomic before Java 5).​
	●​Visibility → when one thread updates a value, other threads see it => In Main Memory
	●​Ordering → the order of execution seen by one thread matches the intended order => Do not reorder the code.

	5. Why long and double were not atomic (before Java 5) => after Java 5 it is atomic
	●​On 32-bit JVMs, a long (64-bit) or double (64-bit) doesn’t fit into a single machine word.​
	●​So, a read/write might need two separate 32-bit operations.​

	
	
	6. How synchronized ensures atomicity
	1.​Mutual exclusion (atomicity)​
	○​Only one thread at a time can execute inside a synchronized block on the same object.​
	○​That prevents race conditions.​
	2.​Visibility​
	○​When a thread exits a synchronized block, it flushes changes from its working memory to main memory.​
	○​When another thread enters, it invalidates its cache and reads the latest values from main memory.
	=> The data is always up to date in main memory.

	7. How AtomicInteger ensures atomicity (CAS giống khoá lạc quan)
	AtomicInteger (and other classes in java.util.concurrent.atomic) use CAS (Compare-And-Swap) — a low-level lock-free CPU instruction.
	How CAS works:
	1.​Read the current value from memory.​
	2.​Compare it with the expected value.​
	3.​If it’s the same, swap it with the new value (in one atomic CPU instruction).​
	4.​If another thread already changed it, retry (loop until success).​

	
	
	
	
	
	
	
	
	
	8. How reordering improves performance
	1. Instruction-level parallelism (ILP)
	Modern CPUs have multiple execution units (ALU, FPU, load/store units).​ If instructions are independent, the CPU can run them in parallel.
	Example:
	int a = 1; // store to register R1
	int b = 2; // store to register R2
	int c = a + b; // needs R1, R2
	
	●​The assignment a = 1 and b = 2 don’t depend on each other.​
	●​CPU can reorder or issue both at once to different execution units.​
	●​Only c = a + b must wait until both are ready.​
	This is called out-of-order execution — CPU schedules instructions to keep pipelines full.

