# What volatile does

1. Visibility guarantee

* Without volatile , a thread may cache a variable's value in its own CPU cache. Other threads
might not see updates immediately.
With volatile , every read of the variable is from main memory, and every write to it is flushed
to main memory immediately.

* This ensures that all threads see the latest value of the variable.

2. Ordering guarantee (happens-before)
e Reads/writes to a volatile variable cannot be reordered with respect to each other.
* |t establishes a happens-before relationship:
* A writetoa volatile variable happens-before every subsequent read of that same

variable.

1. Reorder the code (make it parallel and faster)

Chuing ta hay xem doan ma sau:

int userNum = getUserNum();
int teacherNum = getTeacherNum();
int totalNum = userNum + teacherNum;

e 1xay ra truede 2

ra trirére 3

e 1xay ra trueée 3
Mic du 1 x4y ra trwedre 2, viée sap xép lai 1 va 2 sé khéng anh hwéng dén két qua thire thi cia ma, do d6 JMM

cho phép trinh bién dich va bd xi¥ Iy thwe hién viéc sdp xép lai ndy. Tuy nhién, 1 va 2 phai dwoe thye thi

trwére 3, tive 1a 1, 2 xay ra trude 3.

Nguyén Iy xay ra trwdé'c khong thwe sw ¢6 nghia la mgt thao tac xay ra trwéc thao tac khac,

mic du diéu dé khéng sao tir gbe nhin ciia 1ap trinh vién. Thay vao dé, né ¢6 nghia 1a két qua

> 2 2 ~ » A" s A A s . 2 2 P & A
cua thao tac trwé’e sé dwwegre thao tac tiép theo nhin thiy, bat ké hai thao tac dé6 c6 nam trén

cing mot luong hay khong.

Vi du: Hoat dong 1 xay ra trwée Hoat dong 2. Ngay ca khi Hoat dong 1 va Hoat dong 2 khéng nim trong

ciing mét luong, JMM van ddm bao ring két qua ctia Hoat d6ng 1 sé hién thi cho Hoat ddng 2.




2. JMM

The data sync only when the thread writing from its own Thread
Memory -> Main Memory

=> Maybe it cause the not visibility at the same time.

Great question @ — JMM stands for the Java Memory Model.
It's the set of rules that define how threads in Java interact through memory — specifically, how and
when changes made by one thread become visible to others, and what reordering the compiler/CPU is

allowed to do.

A Core Concepts of the JMM

1. Main Memory vs. Working Memory

* Each thread in Java has its own working memory (like CPU caches, registers).
» All variables live in main memory (heap).
* A thread can only access variables by:

s Reading from main memory into its working memory, and

¢ Writing back from working memory to main memory.

Because of this, one thread's update may not be visible to another immediately unless JMM rules force
synchronization.

3. Happens-Before Relationship

The JMM defines a set of happens-before rules that ensure
visibility and ordering. If one action happens-before another, then:

e The first action’s result is visible to the second, and

e Reordering between them is not allowed.



4. Atomicity, Visibility, Ordering

e Atomicity — indivisible operations (e.g., reads/writes to
int/boolean are atomic, but long/double weren’t atomic
before Java 5).

e Visibility — when one thread updates a value, other threads
see it => In Main Memory

e Ordering — the order of execution seen by one thread
matches the intended order => Do not reorder the code.

5. Why 1long and double were not atomic (before
Java 5) => after Java 5 it is atomic

e On 32-bit JVMs, a 1long (64-bit) or double (64-bit) doesn’t
fit into a single machine word.

e S0, a read/write might need two separate 32-bit
operations.



6. How synchronized ensures atomicity

1. Mutual exclusion (atomicity)

o Only one thread at a time can execute inside a
synchronized block on the same object.

o That prevents race conditions.
2. Visibility

o When a thread exits a synchronized block, it
flushes changes from its working memory to main
memory.

o When another thread enters, it invalidates its cache
and reads the latest values from main memory.

=> The data is always up to date in main memory.

7. How AtomicInteger ensures atomicity (CAS
gibng khoa lac quan)

AtomicInteger (and other classes in

java.util.concurrent.atomic) use CAS (Compare-And-Swap) — a
low-level lock-free CPU instruction.

How CAS works:



1. Read the current value from memory.
2. Compare it with the expected value.

3. If it's the same, swap it with the new value (in one atomic
CPU instruction).

4. If another thread already changed it, retry (loop until
success).



8. How reordering improves performance

1. Instruction-level parallelism (ILP)

Modern CPUs have multiple execution units (ALU, FPU,
load/store units).

If instructions are independent, the CPU can run them in
parallel.

Example:
inta=1; // store to register R1
intb =2; // store to register R2

intc=a+ b; // needs R1, R2

e The assignmenta = 1andb = 2 don’t depend on each
other.

e CPU can reorder or issue both at once to different
execution units.

e Onlyc = a + b mustwait until both are ready.

This is called out-of-order execution — CPU schedules
instructions to keep pipelines full.



	1. Reorder the code (make it parallel and faster) 
	2. JMM 
	The data sync only when the thread writing from its own Thread Memory -> Main Memory  
	=> Maybe it cause the not visibility at the same time. 

	3. Happens-Before Relationship 
	The JMM defines a set of happens-before rules that ensure visibility and ordering. If one action happens-before another, then: 
	●​The first action’s result is visible to the second, and​ 
	●​Reordering between them is not allowed. 

	4. Atomicity, Visibility, Ordering 
	●​Atomicity → indivisible operations (e.g., reads/writes to int/boolean are atomic, but long/double weren’t atomic before Java 5).​ 
	●​Visibility → when one thread updates a value, other threads see it => In Main Memory 
	●​Ordering → the order of execution seen by one thread matches the intended order => Do not reorder the code. 

	5. Why long and double were not atomic (before Java 5) => after Java 5 it is atomic 
	●​On 32-bit JVMs, a long (64-bit) or double (64-bit) doesn’t fit into a single machine word.​ 
	●​So, a read/write might need two separate 32-bit operations.​ 

	 
	 
	6. How synchronized ensures atomicity 
	1.​Mutual exclusion (atomicity)​ 
	○​Only one thread at a time can execute inside a synchronized block on the same object.​ 
	○​That prevents race conditions.​ 
	2.​Visibility​ 
	○​When a thread exits a synchronized block, it flushes changes from its working memory to main memory.​ 
	○​When another thread enters, it invalidates its cache and reads the latest values from main memory. 
	=> The data is always up to date in main memory. 

	7. How AtomicInteger ensures atomicity (CAS giống khoá lạc quan) 
	AtomicInteger (and other classes in java.util.concurrent.atomic) use CAS (Compare-And-Swap) — a low-level lock-free CPU instruction. 
	How CAS works: 
	1.​Read the current value from memory.​ 
	2.​Compare it with the expected value.​ 
	3.​If it’s the same, swap it with the new value (in one atomic CPU instruction).​ 
	4.​If another thread already changed it, retry (loop until success).​ 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	8. How reordering improves performance 
	1. Instruction-level parallelism (ILP) 
	Modern CPUs have multiple execution units (ALU, FPU, load/store units).​ If instructions are independent, the CPU can run them in parallel. 
	Example: 
	int a = 1;   // store to register R1 
	int b = 2;   // store to register R2 
	int c = a + b; // needs R1, R2 
	 
	●​The assignment a = 1 and b = 2 don’t depend on each other.​ 
	●​CPU can reorder or issue both at once to different execution units.​ 
	●​Only c = a + b must wait until both are ready.​ 
	This is called out-of-order execution — CPU schedules instructions to keep pipelines full. 


