9/20/25, 11:44 PM Java 16 new features overview | JavaGuide

Java 16 New Features Overview

2 Guide &% Java €@ NewJavaFeatures @ About 2997 words X About 10 minutes

Java 16 was officially released on March 16, 2021, and is not a long-term support (LTS)

version.

Related reading: OpenJDK Java 16 documentation

JEP 338: Vector API (First Incubation)

The Vector API was originally proposed by JEP 338 and integrated into Java 16 as an
incubating API . The second round of incubation was proposed by JEP 414 and

integrated into Java 17, the third round was proposed by JEP 417 and integrated into
Java 18, and the fourth round was proposed by JEP 426 and integrated into Java 19.

This incubator API provides an initial iteration of an API for expressing vector
computations that reliably compile at runtime to the optimal vector hardware instructions
for supported CPU architectures, resulting in superior performance over equivalent scalar
computations, leveraging Single Instruction Multiple Data (SIMD) technology, a type of
instruction available on most modern CPUs. While HotSpot supports automatic
vectorization, the set of scalar operations that can be converted is limited and susceptible
to code changes. This API will enable developers to easily write portable, high-performance
vector algorithms in Java.

I have already introduced the vector API in detail in the Java 18 new features overview , so

I will not give an additional introduction here.

JEP 347: Enabling C++14 Language Features

Java 16 enables the use of C++14 language features in C++ source code in the JDK and
provides specific guidance on which features can be used in HotSpot code.

In Java 15, the language features used by C++ code in the JDK are limited to the C++98/03
language standard. This requires updating the minimum acceptable versions of the
compilers on various platforms. .

https://javaguide.cn/java/new-features/javal 6 html#jep-395-it 3 25744 1F

https://openjdk.java.net/projects/jdk/16/
https://openjdk.java.net/projects/jdk/16/
https://openjdk.java.net/jeps/338
https://openjdk.java.net/jeps/338
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/426
https://openjdk.java.net/jeps/426
https://javaguide.cn/java/new-features/java18.html
https://javaguide.cn/article/

9/20/25, 11:44 PM Java 16 new features overview | JavaGuide

JEP 376: ZGC Concurrent Thread Stack
Handling

Java 16 moves ZGC thread stack handling from safepoints to a concurrent phase, allowing
GC safepoint pauses in milliseconds even on large heaps. Eliminating this last source of
latency in the ZGC garbage collector can significantly improve application performance
and efficiency.

JEP 387: Elastic Metaspace

Since the introduction of Metaspace, feedback has shown that it often consumes excessive
off-heap memory, leading to memory waste. The Elastic Metaspace feature returns unused
HotSpot class metadata (i.e., metaspace) memory to the operating system more quickly,
reducing the metaspace footprint.

In addition, this proposal simplifies the Metaspace code to reduce maintenance costs.

JEP 390: Warnings for Value-Based Classes

The following introduction is excerpted from: Practice | Analysis of Javai6 New Syntax

Features |, the original text is very well written and recommended for reading.

As early as Java 9, Java designers @Deprecated upgraded annotations, adding two new
elements: since since and . The since element specifies the version in which the
annotated API was deprecated, while further clarifies the semantics of an API annotated
with the @Deprecated annotation. If, it indicates that the API will definitely be removed in
a future version, and developers should use a new API instead, eliminating ambiguity.
(Before Java 9, APIs annotated with the @Deprecated annotation had various semantic
possibilities, including: risky to use, potential for future compatibility issues, possible
removal in a future version, and the need for a better

alternative.) forRemoval @Deprecated forRemoval forRemoval=true

A closer look at the primitive wrapper classes (e.g., java.lang.Integer and .
java.lang.Double) reveals that their constructors are annotated
@eprecated(since="9", forRemoval = true) ,indicating that they will be removed in

https://javaguide.cn/java/new-features/javal 6 html#jep-395-it 3 25744 1F 2/8

https://xie.infoq.cn/article/8304c894c4e38318d38ceb116
https://xie.infoq.cn/article/8304c894c4e38318d38ceb116
https://xie.infoq.cn/article/8304c894c4e38318d38ceb116

9/20/25, 11:44 PM Java 16 new features overview | JavaGuide

the future. This coding style should not be used in your program new Integer(); (it's
recommended to use the _integer_ (int)) Integer a = 10; or
Integer.valueOf() _integer_ (int)). If you continue to use it, the compiler will generate
a warning: "'Integer(int)' is deprecated and marked for removal." Also, note that these
wrapper types have been assigned the same value types as _integer__ (int)
java.util.Optional and java.time.LocalDateTime _integer_ (int)).

Secondly, if you continue synchronized to use value types in synchronized blocks,
warnings or even exceptions will be generated at compile time and runtime. It is important
to note that even if no warnings or exceptions are generated at compile time and runtime,
it is not recommended synchronized to use value types in synchronized blocks. For
example, let's take auto-increment as an example. Example 1-5:

public void inc(Integer count) { java
for (int 1 = 0; i < 10; i++) {
new Thread(() —> {
synchronized (count) {
count++;

¥
}).start();

O 0 N O U1l p W N PP

When executing the program example above, the final output will inevitably differ from
your expectations. This is a common mistake made by many new developers. In a
concurrent environment, Integer objects cannot be synchronized guaranteed thread-
safe using . This is because each count++ operation generates hashcode a different . In
short, each lock is applied to a different object. Therefore, if you want to ensure atomicity
during actual development, you should use AtomicInteger .

JEP 392: Bundling Tools

In Java 14, JEP 343 introduced the bundler command jpackage . It continued incubation
in Java 15, and now in Java 16, it has finally become an official feature.

This packaging tool allows packaging of self-contained Java applications. It supports native
packaging formats, providing a natural installation experience for end users, including ™«
and exe on Windows, pkg and dmg on macOS, and deb and rpm on Linux. It also allc
startup parameters to be specified when packaging and can be called directly from the
command line or programmatically through the ToolProvider API. Note that the jpackage

https://javaguide.cn/java/new-features/javal 6 html#jep-395-it 3 25744 1F 3/8

9/20/25, 11:44 PM Java 16 new features overview | JavaGuide

module name has changed from jdk.incubator.jpackage to jdk.jpackage. This will improve
the end user experience when installing applications and simplify deployment in the "app
store" model.

For an example of using this packaging tool, see the video Playing with Java 16 jpackage

(a web browser is required).

JEP 393: Foreign Memory Access API (Third
Incubation)

The foreign memory access API was introduced to allow Java programs to safely and
efficiently access foreign memory outside the Java heap.

The foreign memory access API was first incubated in Java 14 (JEP 370), resurrected a
second time in Java 15 (JEP 383), and incubated a third time in Java 16.

The purpose of introducing the external memory access API is as follows:

e Universal: A single API should be able to operate on various external memories (such as
native memory, persistent memory, heap memory, etc.).
e Security: Regardless of the memory operations, the API should not violate the security
of the JVM.
e Control: You can freely choose how to release memory (explicitly, implicitly, etc.).
e Available: If access to external memory is required, the API should be
sun.misc.Unsafe .

JEP 394: instanceof Pattern Matching

(Formalization)
JDK Update
EP
version Type J Update Content
. JEP First introduction of instanceof pattern
Java SE 14 preview)
305 matching.

Second JEP No changes compared to the previour.

Java SE 15 . version. We will continue to collect
Preview 375
more feedback.

https://javaguide.cn/java/new-features/javal 6 html#jep-395-it 3 25744 1F 4/8

https://www.youtube.com/watch?v=KahYIVzRIkQ
https://www.youtube.com/watch?v=KahYIVzRIkQ
https://openjdk.org/jeps/370
https://openjdk.org/jeps/370
https://openjdk.org/jeps/383
https://openjdk.org/jeps/383
https://openjdk.org/jeps/305
https://openjdk.org/jeps/305
https://openjdk.org/jeps/305
https://openjdk.org/jeps/375
https://openjdk.org/jeps/375
https://openjdk.org/jeps/375

9/20/25, 11:44 PM Java 16 new features overview | JavaGuide

JDK Update

version Type JEP Update Content
Permanent JEP Pattern variables are no longer
Java SE 16 . e
Release 394 implicitly final.

Starting from Java 16, you can instanceof modify the value of variables in .

// 0ld code java
if (o instanceof String) {
String s = (String)o;

. Use s ...

// New code
if (o instanceof String s) {

© 0 N O Ul Hp W N B
[}

« USe S ...

=
S
(-]

JEP 395: Record Types (Formalization)

Record type change history:
JDK Updat
. paate JEP Update Content
version Type
1 record the k
Java SE . JEP ntroduces ec the keyword,
) Preview _3 =9 record providing a compact syntax for
4 - defining immutable data in a class.

Java SE Second JEP Supported for use in local methods and
15 Preview 384 interfaces record .
Java SE Permanent JEP Non-static inner classes can define non-
16 Release 395 constant static members.

Starting with Java SE 16, non-static inner classes can define non-constant static members.

https://javaguide.cn/java/new-features/javal 6 html#jep-395-it 3 25744 1F 5/8

https://openjdk.org/jeps/394
https://openjdk.org/jeps/394
https://openjdk.org/jeps/394
https://openjdk.java.net/jeps/359
https://openjdk.java.net/jeps/359
https://openjdk.java.net/jeps/359
https://openjdk.org/jeps/384
https://openjdk.org/jeps/384
https://openjdk.org/jeps/384
https://openjdk.org/jeps/395
https://openjdk.org/jeps/395
https://openjdk.org/jeps/395

9/20/25, 11:44 PM Java 16 new features overview | JavaGuide

public class Outer { java
class Inner {
static int age;

}

u p W N P

Before JDK 16, if you write the code above, the IDE will prompt you that the static field
age cannot be declared static in a non-static inner type, unless initialized with a constant

expression.

JEP 396: Strong Encapsulation of JDK Internal
Elements by Default

This feature enables strong encapsulation by default for all internal elements of the JDK,
sun.misc.Unsafe with the exception of critical internal APIs (for example). Code that
accesses JDK internal APIs that compiled successfully with earlier versions may no longer
work by default. Developers are encouraged to migrate from using internal elements to
methods that use the standard API so that they and their users can seamlessly upgrade to
future Java versions. Strong encapsulation was controlled by the JDK 9 launcher option --
illegal-access, which defaulted to warning in JDK 15 and deny in JDK 16. It is still possible
(for now) to relax encapsulation for all packages using a single command-line option, but
in the future this will only be possible by turning on specific packages using --add-opens.

JEP 397: Sealed Classes (Preview)

Sealed classes were previewed by JEP 360 and integrated into Java 15. In JDK 16, sealed
classes were improved (stricter reference checking and inheritance relationships of sealed
classes) and previewed again by JEP 397 .

I covered sealed classes in detail in the Java 14 & 15 New Features Overview, so I won’t go
into further detail here .

Other optimizations and improvements

e JEP 380: Unix-Domain Socket Channels : Unix-domain sockets have been a
feature of most Unix platforms and are now supported on Windows 10 and Windows
Server 2019. This feature adds Unix-domain (AF__UNIX) socket support to the socket

https://javaguide.cn/java/new-features/javal 6 html#jep-395-it 3 25744 1F 6/8

https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/397
https://openjdk.java.net/jeps/397
https://javaguide.cn/java/new-features/java14-15.html

9/20/25, 11:44 PM Java 16 new features overview | JavaGuide

channel and server socket channel APIs of the java.nio.channels package. It extends the
inherited channel mechanism to support Unix-domain socket channels and server
socket channels. Unix-domain sockets are used for inter-process communication (IPC)
on the same host. They are largely similar to TCP/IP, except that sockets are addressed
by file system path names instead of Internet Protocol (IP) addresses and port numbers.
For local inter-process communication, Unix-domain sockets are more secure and
efficient than TCP/IP loopback connections.

JEP 389: Foreign Linker API (Incubating): This incubating API provides
statically typed, pure Java access to native code. This API will greatly simplify the
previously complex and error-prone process of binding native libraries. Java 1.1 has
supported native method calls through the Java Native Interface (JNI), but it has been
difficult to use. Java developers should be able to bind specific native libraries for
specific tasks. It also provides support for foreign functions without any intermediate
JNI glue code.

JEP 357: Migrate from Mercurial to Git : Previously, the OpenJDK source code
was managed using the version management tool Mercurial, and now it has been
migrated to Git.

JEP 369: Migrate to GitHub : Following the migration from Mercurial to Git in JEP
357, the OpenJDK community Git repository was hosted on GitHub. However, this
migration was only performed for JDK 11 and later.

JEP 386: Porting Alpine Linux : Alpine Linux is an independent, non-commercial
Linux distribution. It is very small, requiring no more than 8MB of space for a container
and approximately 130MB of disk space for a minimal installation. It is also very simple
and secure. This proposal ports the JDK to Alpine Linux. Since Alpine Linux is a
lightweight Linux distribution based on the musl library, it is also applicable to other
Linux distributions that use the musl library for x64 and AArch64 architectures.

JEP 388: Windows/AArch64 Porting : These JEPs focus less on porting efforts
themselves and more on integrating them into the JDK mainline repository. JEP 386
ports the JDK to Alpine Linux and other distributions that use musl as the primary C
library on x64. Additionally, JEP 388 ports the JDK to Windows AArch64 (ARM64).

References

Java Language Changes
Consolidated JDK 16 Release Notes
Java 16 officially released, new features analyzed one by one .

Practical | Analyzing the New Syntax Features of Java 16 (Excellent)

https://javaguide.cn/java/new-features/javal 6 html#jep-395-it 3 25744 1F

7/8

https://docs.oracle.com/en/java/javase/16/language/java-language-changes.html
https://docs.oracle.com/en/java/javase/16/language/java-language-changes.html
https://www.oracle.com/java/technologies/javase/16all-relnotes.html
https://www.oracle.com/java/technologies/javase/16all-relnotes.html
https://www.infoq.cn/article/IAkwhx7i9V7G8zLVEd4L
https://www.infoq.cn/article/IAkwhx7i9V7G8zLVEd4L
https://xie.infoq.cn/article/8304c894c4e38318d38ceb116
https://xie.infoq.cn/article/8304c894c4e38318d38ceb116

9/20/25, 11:44 PM

Java 16 new features overview | JavaGuide

Recently Updated2023/10/27 05:49

Contributors: sam , guide , xtexChooser , Guide , Erzbir , Mr.Hope , paigeman , yuanrui

Copyright © 2025 Guide

https:/javaguide.cn/java/new-features/javal 6. html#jep-395-it 5% J B -4 I

8/8

