
Java 17 was officially released on September 14, 2021 and is a long-term support (LTS)
version.

The following figure is the timeline of Oracle JDK support given by Oracle.

17 can be supported until September 2029 at most.

Java 17 will be the most significant long-term support (LTS) release since Java 8,
representing eight years of hard work by the Java community. Spring 6.x and Spring Boot
3.x support Java 17 at the very least.

This update brings a total of 14 new features:

JEP 306: Restore Always-Strict Floating-Point Semantics
JEP 356: Enhanced Pseudo-Random Number Generators
JEP 382: New macOS Rendering Pipeline
JEP 391: macOS/AArch64 Port (support for macOS AArch64)
JEP 398: Deprecate the Applet API for Removal
JEP 403: Strongly Encapsulate JDK Internals
JEP 406: Pattern Matching for switch  (Preview)
JEP 407: Remove RMI Activation
JEP 409: Sealed Classes (  Regularization)
JEP 410: Remove the Experimental AOT and JIT Compiler

Java 17 New Features Overview
(Important)

Guide Java About 1864 words About 6 minutesNew Java Features

9/20/25, 11:45 PM Java 17 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java17.html#jep-356-增强的伪随机数生成器 1/7

https://openjdk.java.net/jeps/306
https://openjdk.java.net/jeps/306
https://openjdk.java.net/jeps/356
https://openjdk.java.net/jeps/356
https://openjdk.java.net/jeps/382
https://openjdk.java.net/jeps/382
https://openjdk.java.net/jeps/391
https://openjdk.java.net/jeps/391
https://openjdk.java.net/jeps/398
https://openjdk.java.net/jeps/398
https://openjdk.java.net/jeps/403
https://openjdk.java.net/jeps/403
https://openjdk.java.net/jeps/406
https://openjdk.java.net/jeps/406
https://openjdk.java.net/jeps/407
https://openjdk.java.net/jeps/407
https://openjdk.java.net/jeps/409
https://openjdk.java.net/jeps/409
https://openjdk.java.net/jeps/410
https://openjdk.java.net/jeps/410
https://javaguide.cn/article/


JEP 411: Deprecate the Security Manager for Removal
JEP 412: Foreign Function & Memory API  (Incubating)
JEP 414: Vector API  (Second Incubation)
JEP 415:Context-Specific Deserialization Filters

Here I will only introduce in detail the new features 356, 398, 413, 406, 407, 409, 410, 411,
412, and 414 that I think are more important.

Related reading: OpenJDK Java 17 documentation  .

Before JDK 17, we could use Random , , ThreadLocalRandom and SplittableRandom to
generate random numbers. However, these three classes have their own flaws and lack
support for common pseudo-random algorithms.

Java 17 adds new interface types and implementations for pseudorandom number
generators (PRNGs, also known as deterministic random bit generators), making it easier
for developers to use various PRNG algorithms interchangeably in their applications.

PRNGs  are used to generate sequences of numbers that are close to being completely
random. Generally, PRNGs rely on an initial value, also known as a seed, to generate the
corresponding pseudo-random number sequence. As long as the seed is fixed, the
random numbers generated by the PRNG are completely deterministic, and therefore
the random number sequences they generate are not truly random.

Example usage:

JEP 356: Enhanced Pseudo-Random Number
Generator

RandomGeneratorFactory<RandomGenerator> l128X256MixRandom = 
RandomGeneratorFactory.of("L128X256MixRandom");
// 使用时间戳作为随机数种子
RandomGenerator randomGenerator = 
l128X256MixRandom.create(System.currentTimeMillis());
// 生成随机数
randomGenerator.nextInt(10);

java
1
2
3
4
5

9/20/25, 11:45 PM Java 17 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java17.html#jep-356-增强的伪随机数生成器 2/7

https://openjdk.java.net/jeps/411
https://openjdk.java.net/jeps/411
https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/415
https://openjdk.java.net/jeps/415
https://openjdk.java.net/projects/jdk/17/
https://openjdk.java.net/projects/jdk/17/
https://ctf-wiki.org/crypto/streamcipher/prng/intro/
https://ctf-wiki.org/crypto/streamcipher/prng/intro/


The Applet API is used to write Java applets that run in web browsers. It was eliminated
many years ago and there is no reason to use it anymore.

The Applet API was marked deprecated in Java 9 ( JEP 289  ), but was not intended for
removal.

Just instanceof like , switch the type matching automatic conversion function was also
added.

instanceof Code example:

switch Code example:

JEP 398: Deprecate the Applet API for removal

JEP 406: Type Matching in Switch (Preview)

// Old code
if (o instanceof String) {
    String s = (String)o;
    ... use s ...
}

// New code
if (o instanceof String s) {
    ... use s ...
}

// Old code
static String formatter(Object o) {
    String formatted = "unknown";
    if (o instanceof Integer i) {
        formatted = String.format("int %d", i);
    } else if (o instanceof Long l) {
        formatted = String.format("long %d", l);
    } else if (o instanceof Double d) {
        formatted = String.format("double %f", d);
    } else if (o instanceof String s) {

java
1
2
3
4
5
6
7
8
9
10

java
1
2
3
4
5
6
7
8
9
10

9/20/25, 11:45 PM Java 17 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java17.html#jep-356-增强的伪随机数生成器 3/7

https://openjdk.java.net/jeps/289
https://openjdk.java.net/jeps/289


The judgment of null value has also been optimized.

JEP 407: Remove Remote Method Invocation

        formatted = String.format("String %s", s);
    }
    return formatted;
}

// New code
static String formatterPatternSwitch(Object o) {
    return switch (o) {
        case Integer i -> String.format("int %d", i);
        case Long l    -> String.format("long %d", l);
        case Double d  -> String.format("double %f", d);
        case String s  -> String.format("String %s", s);
        default        -> o.toString();
    };
}

// Old code
static void testFooBar(String s) {
    if (s == null) {
        System.out.println("oops!");
        return;
    }
    switch (s) {
        case "Foo", "Bar" -> System.out.println("Great");
        default           -> System.out.println("Ok");
    }
}

// New code
static void testFooBar(String s) {
    switch (s) {
        case null         -> System.out.println("Oops");
        case "Foo", "Bar" -> System.out.println("Great");
        default           -> System.out.println("Ok");
    }
}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

9/20/25, 11:45 PM Java 17 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java17.html#jep-356-增强的伪随机数生成器 4/7



Removes the Remote Method Invocation (RMI) activation mechanism, while retaining the
rest of RMI. The RMI activation mechanism is deprecated and no longer used.

Sealed classes were previewed by JEP 360  and integrated into Java 15. In JDK 16, sealed
classes were improved (stricter reference checking and inheritance relationships of sealed
classes) and previewed again by JEP 397 .

I covered sealed classes in detail in the Java 14 & 15 New Features Overview, so I won’t go
into further detail here .

Java 9's JEP 295  introduced an experimental ahead-of-time (AOT) compiler that
compiles Java classes into native code before starting the virtual machine.

Java 17 will remove the experimental ahead-of-time (AOT) and just-in-time (JIT)
compilers, as they have been rarely used since their introduction and the effort required to
maintain them is significant. The experimental Java-level JVM Compiler Interface
(JVMCI) will remain so that developers can continue to use externally built versions of the
compiler for JIT compilation.

Deprecates the security manager for removal in a future release.

The security manager dates back to Java 1.0, and for many years it has not been the
primary method for protecting client-side Java code, and is rarely used to protect server-
side code. To move Java forward, Java 17 deprecates the security manager for removal
along with the legacy Applet API ( JEP 398  ).

Activation Mechanism

JEP 409: Sealed Classes (Regularization)

JEP 410: Remove experimental AOT and JIT
compilers

JEP 411: Deprecate Security Manager for
Removal

9/20/25, 11:45 PM Java 17 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java17.html#jep-356-增强的伪随机数生成器 5/7

https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/397
https://openjdk.java.net/jeps/397
https://javaguide.cn/java/new-features/java14-15.html
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/398
https://openjdk.java.net/jeps/398


This API enables Java programs to interoperate with code and data outside the Java
runtime. By efficiently calling external functions (that is, code outside the JVM) and safely
accessing external memory (that is, memory not managed by the JVM), this API enables
Java programs to call native libraries and process native data without the risks and
brittleness of JNI.

The foreign function and memory APIs had their first incubation phase in Java 17, as
proposed by JEP 412. They were incubated in JEP 419  for the second time and
integrated into Java 18, and previewed in JEP 424  for Java 19.

In the Java 19 New Features Overview , I introduced the external function and memory
API in detail, so I will not give additional introductions here.

The Vector API was originally proposed by JEP 338  and integrated into Java 16 as an
incubating API . The second round of incubation was proposed by JEP 414  and
integrated into Java 17, the third round was proposed by JEP 417  and integrated into
Java 18, and the fourth round was proposed by JEP 426  and integrated into Java 19.

This incubator API provides an initial iteration of an API for expressing vector
computations that reliably compile at runtime to the optimal vector hardware instructions
for supported CPU architectures, resulting in superior performance over equivalent scalar
computations, leveraging Single Instruction Multiple Data (SIMD) technology, a type of
instruction available on most modern CPUs. While HotSpot supports automatic
vectorization, the set of scalar operations that can be converted is limited and susceptible
to code changes. This API will enable developers to easily write portable, high-performance
vector algorithms in Java.

I have already introduced the vector API in detail in the Java 18 new features overview , so
I will not give an additional introduction here.

JEP 412: Foreign Function and Memory API
(Incubating)

JEP 414: Vector API (Second Incubation)

9/20/25, 11:45 PM Java 17 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java17.html#jep-356-增强的伪随机数生成器 6/7

https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/412
https://openjdk.org/jeps/419
https://openjdk.org/jeps/419
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://javaguide.cn/java/new-features/java19.html
https://openjdk.java.net/jeps/338
https://openjdk.java.net/jeps/338
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/426
https://openjdk.java.net/jeps/426
https://javaguide.cn/java/new-features/java18.html


Recently Updated2023/10/27 05:44
Contributors: guide , Guide , Mr.Hope , HunterChen , paigeman

Copyright © 2025 Guide

9/20/25, 11:45 PM Java 17 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java17.html#jep-356-增强的伪随机数生成器 7/7


