
JDK 19 is scheduled to be officially released for production use on September 20, 2022. It
is not a long-term support version. However, there are some important new features in
JDK 19 that are worth noting.

JDK 19 has only 7 new features:

JEP 405: Record Patterns (Preview)
JEP 422: Linux/RISC-V Port
JEP 424: Foreign Function & Memory API (Preview)
JEP 425: Virtual Threads (Preview)
JEP 426: Vector API (Fourth Incubation)
JEP 427: Pattern Matching for switch
JEP 428: Structured Concurrency (Incubating)

Here I will only introduce in detail the four new features 424, 425, 426 and 428 which I
think are more important.

Related reading: OpenJDK Java 19 documentation

This API enables Java programs to interoperate with code and data outside the Java
runtime. By efficiently calling external functions (that is, code outside the JVM) and safely
accessing external memory (that is, memory not managed by the JVM), this API enables
Java programs to call native libraries and process native data without the risks and
brittleness of JNI.

The foreign function and memory APIs had their first incubation phase in Java 17, as
proposed by JEP 412. They were incubated in JEP 419 for the second time and
integrated into Java 18, and previewed in JEP 424 for Java 19.

Before external functions and memory API:

Java sun.misc.Unsafe provides some methods for performing low-level, unsafe
operations (such as directly accessing system memory resources and independently

JEP 424: Foreign Function and Memory API
(Preview)

Java 19 New Features Overview
Guide Java About 1698 words About 6 minutesNew Java Features

9/20/25, 11:58 PM Java 19 new features overview | JavaGuide

https://javaguide.cn/java/new-features/java19.html 1/5

https://openjdk.org/jeps/405
https://openjdk.org/jeps/405
https://openjdk.org/jeps/422
https://openjdk.org/jeps/422
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://openjdk.org/jeps/425
https://openjdk.org/jeps/425
https://openjdk.java.net/jeps/426
https://openjdk.java.net/jeps/426
https://openjdk.java.net/jeps/427
https://openjdk.java.net/jeps/427
https://openjdk.org/jeps/428
https://openjdk.org/jeps/428
https://openjdk.org/projects/jdk/19/
https://openjdk.org/projects/jdk/19/
https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/412
https://openjdk.org/jeps/419
https://openjdk.org/jeps/419
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://hg.openjdk.java.net/jdk/jdk/file/tip/src/jdk.unsupported/share/classes/sun/misc/Unsafe.java
https://hg.openjdk.java.net/jdk/jdk/file/tip/src/jdk.unsupported/share/classes/sun/misc/Unsafe.java
https://javaguide.cn/article/

managing memory resources). Unsafe Classes allow the Java language to operate
memory space similar to C language pointers, but also increase the insecurity of the
Java language. Improper use of Unsafe classes will increase the probability of program
errors.
Java 1.1 has supported native method calls through the Java Native Interface (JNI), but
it wasn't very user-friendly. JNI implementation was complex and involved numerous
steps (for detailed steps, refer to this article: Guide to JNI (Java Native Interface)). It
wasn't controlled by the JVM's language safety mechanisms, hindering the cross-
platform nature of the Java language. Furthermore, JNI performance was poor, as JNI
method calls couldn't benefit from many common JIT optimizations, such as inlining.
While frameworks like JNA , JNR , and JavaCPP have improved JNI, the results
remain less than ideal.

The introduction of external function and memory API is to solve some pain points in Java
accessing external functions and external memory.

The Foreign Function & Memory API (FFM API) defines the following classes and
interfaces:

Allocate external memory: MemorySegment , MemoryAddress and
SegmentAllocator ;

Manipulate and access structured external memory: MemoryLayout , VarHandle ;
Control the allocation and release of external memory: MemorySession ;
Call external functions: Linker , FunctionDescriptor and SymbolLookup .

The following is an example of using the FFM API. This code obtains radixsort the
method handle of the C library function and then uses it to sort four strings in a Java array.

// 1. 在C库路径上查找外部函数
Linker linker = Linker.nativeLinker();
SymbolLookup stdlib = linker.defaultLookup();
MethodHandle radixSort = linker.downcallHandle(
 stdlib.lookup("radixsort"), ...);
// 2. 分配堆上内存以存储四个字符串
String[] javaStrings = { "mouse", "cat", "dog", "car" };
// 3. 分配堆外内存以存储四个指针
SegmentAllocator allocator = implicitAllocator();
MemorySegment offHeap =
allocator.allocateArray(ValueLayout.ADDRESS, javaStrings.length);
// 4. 将字符串从堆上复制到堆外
for (int i = 0; i < javaStrings.length; i++) {
 // 在堆外分配一个字符串，然后存储指向它的指针

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14

9/20/25, 11:58 PM Java 19 new features overview | JavaGuide

https://javaguide.cn/java/new-features/java19.html 2/5

https://www.baeldung.com/jni
https://www.baeldung.com/jni
https://github.com/java-native-access/jna
https://github.com/java-native-access/jna
https://github.com/jnr/jnr-ffi
https://github.com/jnr/jnr-ffi
https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp

A virtual thread is a lightweight process (LWP) implemented by the JDK rather than the
OS. Many virtual threads share the same operating system thread, and the number of
virtual threads can be much larger than the number of operating system threads.

Virtual threads have proven to be very useful in other multithreaded languages, such as
Goroutine in Go and processes in Erlang.

Virtual threads avoid the extra cost of context switching, take into account the advantages
of multi-threading, simplify the complexity of high-concurrency programs, and effectively
reduce the workload of writing, maintaining, and observing high-throughput concurrent
applications.

There is a discussion on Java 19 virtual threads on Zhihu. If you are interested, you can
check it out: https://www.zhihu.com/question/536743167 .

For a detailed explanation and principle of Java virtual threads, please refer to the
following two articles:

Virtual Thread Principle and Performance Analysis｜Dewoo Technology
Java 19 is now GA! See how virtual threads significantly improve system throughput
Virtual Thread - VirtualThread Source Code Perspective

JEP 425: Virtual Threads (Preview)

 MemorySegment cString =
allocator.allocateUtf8String(javaStrings[i]);
 offHeap.setAtIndex(ValueLayout.ADDRESS, i, cString);
}
// 5. 通过调用外部函数对堆外数据进行排序
radixSort.invoke(offHeap, javaStrings.length, MemoryAddress.NULL,
'\0');
// 6. 将(重新排序的)字符串从堆外复制到堆上
for (int i = 0; i < javaStrings.length; i++) {
 MemoryAddress cStringPtr =
offHeap.getAtIndex(ValueLayout.ADDRESS, i);
 javaStrings[i] = cStringPtr.getUtf8String(0);
}
assert Arrays.equals(javaStrings, new String[] {"car", "cat",
"dog", "mouse"}); // true

15
16
17
18
19
20
21
22
23
24

9/20/25, 11:58 PM Java 19 new features overview | JavaGuide

https://javaguide.cn/java/new-features/java19.html 3/5

https://www.zhihu.com/question/536743167
https://www.zhihu.com/question/536743167
https://mp.weixin.qq.com/s/vdLXhZdWyxc6K-D3Aj03LA
https://mp.weixin.qq.com/s/vdLXhZdWyxc6K-D3Aj03LA
https://mp.weixin.qq.com/s/yyApBXxpXxVwttr01Hld6Q
https://mp.weixin.qq.com/s/yyApBXxpXxVwttr01Hld6Q
https://www.cnblogs.com/throwable/p/16758997.html
https://www.cnblogs.com/throwable/p/16758997.html

The Vector API was originally proposed by JEP 338 and integrated into Java 16 as an
incubating API . The second round of incubation was proposed by JEP 414 and
integrated into Java 17, the third round was proposed by JEP 417 and integrated into
Java 18, and the fourth round was proposed by JEP 426 and integrated into Java 19.

I have already introduced the vector API in detail in the Java 18 new features overview , so
I will not give an additional introduction here.

JDK 19 introduces structured concurrency, a multi-threaded programming method. Its
purpose is to simplify multi-threaded programming through structured concurrency APIs,
not to replace them java.util.concurrent . It is currently in the incubator stage.

Structured concurrency treats multiple tasks running in different threads as a single unit of
work, simplifying error handling, improving reliability, and enhancing observability. In
other words, structured concurrency preserves the readability, maintainability, and
observability of single-threaded code.

The basic API of structured concurrency is StructuredTaskScope to
StructuredTaskScope support splitting a task into multiple concurrent subtasks, which

are executed in their own threads, and the subtasks must complete before the main task
continues.

StructuredTaskScope The basic usage is as follows:

JEP 426: Vector API (Fourth Incubation)

JEP 428: Structured Concurrency (Incubating)

 try (var scope = new StructuredTaskScope<Object>()) {
 // 使用fork方法派生线程来执行子任务
 Future<Integer> future1 = scope.fork(task1);
 Future<String> future2 = scope.fork(task2);
 // 等待线程完成
 scope.join();
 // 结果的处理可能包括处理或重新抛出异常
 ... process results/exceptions ...
 } // close

java
1
2
3
4
5
6
7
8
9

9/20/25, 11:58 PM Java 19 new features overview | JavaGuide

https://javaguide.cn/java/new-features/java19.html 4/5

https://openjdk.java.net/jeps/338
https://openjdk.java.net/jeps/338
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/426
https://openjdk.java.net/jeps/426
https://javaguide.cn/java/new-features/java18.html
https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html
https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Structured concurrency is well suited for virtual threads, which are lightweight threads
implemented by the JDK. Many virtual threads share the same operating system thread,
allowing for a very large number of virtual threads.

Recently Updated2024/9/20 10:02
Contributors: guide , Mr.Hope , Guide

Copyright © 2025 Guide

9/20/25, 11:58 PM Java 19 new features overview | JavaGuide

https://javaguide.cn/java/new-features/java19.html 5/5

