9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

Overview of Java 20 new features

2 Guide &% Java € New JavaFeatures @ About 2883 words R About 10 minutes

JDK 20 was released on March 21, 2023 and is not a long-term support version.

According to the development plan, the next LTS version will be JDK 21, which will be
released in September 2023.

Open)DK JDK 20 General-Availability Release

This page provides production-ready open-source builds of the Java Development
Kit, version 20, an implementation of the Java SE 20 Platform under the GNU
General Public License, version 2, with the Classpath Exception.

Commercial builds of JDK 20 from Oracle, under a non-open-source license, can be
found here.

JDK 20 has only 7 new features:

e JEP 429: Scoped Values (First Incubation)

o JEP 432: Record Patterns (Second Preview)

e JEP 433: Pattern Matching in Switches (Fourth Preview)

e JEP 434: Foreign Function & Memory API (Second Preview)
e JEP 436: Virtual Threads (Second Preview)

e JEP 437: Structured Concurrency (Second Incubation)

e JEP 432: Vector API (Fifth Incubation)

JEP 429: Scoped Values (First Incubation)

Scoped Values: They can share immutable data within and between threads and are
superior to thread-local variables, especially when using a large number of virtual threads.

final static ScopedValue<...> V = new ScopedValue<>(); java

// In some method
ScopedValue.where(V, <value>)
.run(() —= { ... V.get() ... call methods ... }); .

co N O Ul Hp WIN B

https://javaguide.cn/java/new-features/java20.html 1/11

https://openjdk.org/jeps/429
https://openjdk.org/jeps/429
https://openjdk.org/jeps/432
https://openjdk.org/jeps/432
https://openjdk.org/jeps/433
https://openjdk.org/jeps/433
https://openjdk.org/jeps/434
https://openjdk.org/jeps/434
https://openjdk.org/jeps/436
https://openjdk.org/jeps/436
https://openjdk.org/jeps/437
https://openjdk.org/jeps/437
https://openjdk.org/jeps/438
https://openjdk.org/jeps/438
https://javaguide.cn/article/

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

// In a method called directly or indirectly from the lambda
expression
. V.get()

Scoped values allow data to be shared safely and efficiently between components in a
larger program without resorting to method parameters.

For a detailed introduction to scope values, we recommend reading the Scope Values FAQ

article.

JEP 432: Record Mode (Second Preview)

Record Patterns allow you to deconstruct record values, making it easier to extract data
from record classes. Furthermore, you can nest record patterns and combine them with
type patterns to achieve powerful, declarative, and composable forms of data navigation
and processing.

Record patterns cannot be used alone, but must be used with instanceof or switch pattern
matching.

Let's take instanceof as an example to demonstrate it briefly.

Simply define a record class:
1 record Shape(String type, long unit){} Java

Before recording mode:

1 Shape circle = new Shape("Circle", 10); Java
> if (circle instanceof Shape shape) {
3
4 System.out.println("Area of " + shape.type() + " is : " + Math.PI
5 * Math.pow(shape.unit(), 2));
¥
With the record mode:

https://javaguide.cn/java/new-features/java20.html 2/11

https://www.happycoders.eu/java/scoped-values/
https://www.happycoders.eu/java/scoped-values/
https://www.happycoders.eu/java/scoped-values/

9/21/25,12:03 AM

Java 20 new features overview | JavaGuide

1 Shape circle = new Shape("Circle", 10); java
v if (circle instanceof Shape(String type, long unit)) {
3 System.out.println("Area of " + type + " is : " + Math.PI x
4 Math.pow(unit, 2));
b
Let’s take a look at the use of recording mode and switch.
Define some classes:
interface Shape {} java

A W N -

record Circle(double radius) implements Shape { }
record Square(double side) implements Shape { }
record Rectangle(double length, double width) implements Shape { }

Before recording mode:

1 Shape shape = new Circle(10); java
5 switch (shape) {
3 case Circle c:
4 System.out.println("The shape is Circle with area: " +
5 Math.PI % c.radius() * c.radius());
6 break;
7
8 case Square s:
9 System.out.println("The shape is Square with area: " +
10 s.side() * s.side());
11 break;
12
13 case Rectangle r:
14 System.out.println("The shape is Rectangle with area: + " +
15 r.length() * r.width());
16 break;
17
18 default:
System.out.println("Unknown Shape");
break;
b
With the record mode: ‘

https://javaguide.cn/java/new-features/java20.html

3/11

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

1 Shape shape = new Circle(10); java
> switch(shape) {

3

4 case Circle(double radius):

5 System.out.println("The shape is Circle with area: " + Math.PI
6 * radius x radius);

v break;

8

9 case Square(double side):

10 System.out.println("The shape is Square with area: " + side x*
11 side);

12 break;

13

14 case Rectangle(double length, double width):

15 System.out.println("The shape is Rectangle with area: + " +

16 length *x width);

17 break;

18

19 default:

System.out.println("Unknown Shape");
break;

Record mode can avoid unnecessary conversions, making the code more concise and easier
to read. Moreover, after using record mode, you no longer have to worry about null or
NullPointerException , and the code is safer and more reliable.

Record mode was first previewed in Java 19, proposed by JEP 405. It was previewed
again in JDK 20, proposed by JEP 432. This preview includes:

e Add support for generic record pattern type parameter inference,
e Add support for record mode to appear in the title of the enhancement statement for
e Remove support for named record mode.

Note : Do not confuse the record mode with the record class officially introduced in JDK16

https://javaguide.cn/java/new-features/java20.html 4/11

https://openjdk.org/jeps/405
https://openjdk.org/jeps/405
https://openjdk.org/jeps/432
https://openjdk.org/jeps/432
https://javaguide.cn/java/new-features/java16.html
https://javaguide.cn/java/new-features/java16.html

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

JEP 433: Pattern Matching in Switches (Fourth
Preview)

Just instanceof like, switch the type matching automatic conversion function was also
added.

instanceof Code example:

// 0ld code java
if (o instanceof String) {
String s = (String)o;

. use s ...

// New code
if (o instanceof String s) {
. USe S ...

O 0 N O U1l Hp W N P
(S}

=
S
(S}

switch Code example:

1 // 0ld code java
5 static String formatter(Object o) {

3 String formatted = "unknown";

4 if (o instanceof Integer i) {

5 formatted = String.format("int %d", i);

6 } else if (o instanceof Long 1) {

2 formatted = String.format("long %d", 1);

8 } else if (o instanceof Double d) {

9 formatted = String.format("double %f", d);
10 } else if (o instanceof String s) {

11 formatted = String.format("String %s", s);
12 ;

13 return formatted;

e
"1 oA
-

// New code
static String formatterPatternSwitch(Object o) {
return switch (o) {

ol
N o

https://javaguide.cn/java/new-features/java20.html 5/11

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

18 case Integer i —> String.format("int %d", 1i);
19 case Long 1 -> String.format("long %d", 1);
20 case Double d -> String.format("double %f", d);
21 case String s -> String.format("String %s", s);
22 default -> 0.toString();

23 b

24 }

25

switch Pattern matching was previewed in Java 17, Java 18, and Java 19, with Java 20
being the fourth preview. Each preview generally includes minor improvements, which I
won't detail here.

JEP 434: Foreign Function and Memory API
(Second Preview)

This API enables Java programs to interoperate with code and data outside the Java
runtime. By efficiently calling external functions (that is, code outside the JVM) and safely
accessing external memory (that is, memory not managed by the JVM), this API enables
Java programs to call native libraries and process native data without the risks and
brittleness of JNI.

The foreign function and memory API had its first incubation phase in Java 17, with JEP
412. It had its second incubation phase in Java 18, with JEP 419. It was first previewed
in Java 19, with JEP 424

JDK 20 is the second preview, proposed by JEP 434. This time the improvements
include:

e MemorySegment and MemoryAddress abstract unity

e Enhanced MemorylLayout Hierarchy

e MemorySession Splitinto Arena and SegmentScope to facilitate segment sharing
across maintenance boundaries.

In the Java 19 New Features Overview , I introduced the external function and memory

API in detail, so I will not give additional introductions here.

https://javaguide.cn/java/new-features/java20.html 6/11

https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/412
https://openjdk.org/jeps/419
https://openjdk.org/jeps/419
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://openjdk.org/jeps/434
https://openjdk.org/jeps/434
https://javaguide.cn/java/new-features/java19.html

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

JEP 436: Virtual Threads (Second Preview)

A virtual thread is a lightweight process (LWP) implemented by the JDK rather than the
OS and scheduled by the JVM. Many virtual threads share the same OS thread, and the
number of virtual threads can be much greater than the number of OS threads.

Before the introduction of virtual threads, java.lang.Thread the package already
supported platform threads, which are the threads we've been using since the days of
virtual threads. The JVM scheduler manages virtual threads through platform threads
(carrier threads). A platform thread can execute different virtual threads at different times
(multiple virtual threads are attached to a platform thread). When a virtual thread is
blocked or waiting, the platform thread can switch to executing another virtual thread.

The relationship diagram of virtual threads, platform threads, and system kernel threads is
shown below (Source: How to Use Java 19 Virtual Threads):

VT | VT | VT VT | VT | VT VT | VT | VT VT VT

Platform Platform Platform Platform
Thread Thread Thread Thread

OS Kernel Thread Thread Thread Thread

A few more points about the correspondence between platform threads and kernel threads:

JVM

5

In mainstream operating systems like Windows and Linux, Java threads use a one-to-one
thread model, meaning one platform thread corresponds to one kernel thread. Solaris is a
special case, where the HotSpot VM supports both many-to-many and one-to-one
threading. For more details, please refer to R's answer: Is the thread model in the JVM

user-level °?

Compared to platform threads, virtual threads are inexpensive and lightweight, destn.
immediately after use. Therefore, they do not need to be reused or pooled. Each task can
run in its own dedicated virtual thread. Virtual threads can be paused and resumed to

https://javaguide.cn/java/new-features/java20.html 711

https://medium.com/javarevisited/how-to-use-java-19-virtual-threads-c16a32bad5f7
https://medium.com/javarevisited/how-to-use-java-19-virtual-threads-c16a32bad5f7
https://www.zhihu.com/question/23096638/answer/29617153
https://www.zhihu.com/question/23096638/answer/29617153
https://www.zhihu.com/question/23096638/answer/29617153

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

switch between threads, avoiding the overhead of context switching while maintaining the
advantages of multithreading. This simplifies the complexity of high-concurrency
programs and effectively reduces the workload of writing, maintaining, and monitoring
high-throughput concurrent applications.

Virtual threads have proven to be very useful in other multithreaded languages, such as
Goroutine in Go and processes in Erlang.

There is a discussion on Java 19 virtual threads on Zhihu. If you are interested, you can

check it out: https://www.zhihu.com/question/536743167

For a detailed explanation and principle of Java virtual threads, please refer to the
following articles:

e A Simple Introduction to Virtual Threads
e Java 19 is now GA! See how virtual threads significantly improve system throughput
e Virtual Thread - VirtualThread Source Code Perspective

Virtual threads were first previewed in Java 19, proposed by JEP 425. JDK 20 saw a

second preview with some minor changes that I won't detail here.

Finally, let's look at four ways to create virtual threads:

1 // 1. 3@ Thread.ofVirtual() fAlI&E java
5 Runnable fn = () — {

3 // your code here

4 b

5

6 Thread thread = Thread.ofVirtual(fn)

v .start();

8

9 // 2. @ Thread.startVirtualThread() . 6I&

10 Thread thread = Thread.startVirtualThread(() — {

11 // your code here

12 1)

13

14 // 3. 1@id Executors.newVirtualThreadPerTaskExecutor() 6l

15 var executorService = Executors.newVirtualThreadPerTaskExecutor();
16

17 executorService.submit(() —> {

18 // your code here .
19)

20

https://javaguide.cn/java/new-features/java20.html 8/11

https://www.zhihu.com/question/536743167
https://www.zhihu.com/question/536743167
https://javaguide.cn/java/concurrent/virtual-thread.html
https://javaguide.cn/java/concurrent/virtual-thread.html
https://mp.weixin.qq.com/s/yyApBXxpXxVwttr01Hld6Q
https://mp.weixin.qq.com/s/yyApBXxpXxVwttr01Hld6Q
https://www.cnblogs.com/throwable/p/16758997.html
https://www.cnblogs.com/throwable/p/16758997.html
https://openjdk.org/jeps/425
https://openjdk.org/jeps/425

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

21 class CustomThread implements Runnable {
22 @Override

23 public void run() {

24 System.out.println("CustomThread run");
25 b

26 b

27

28 //4. Bd ThreadFactory gI#

29 CustomThread customThread = new CustomThread();

30 // RENEREL] £

31 ThreadFactory factory = Thread.ofVirtual().factory();
32 // BIEEILETR

33 Thread thread = factory.newThread(customThread);

34 // Buh&iE

35 thread.start();

From the four ways of creating virtual threads listed above, it can be seen that in order to
lower the threshold of virtual threads, the official has tried its best to reuse the original

Thread thread class, so that a smooth transition to the use of virtual threads can be
achieved.

JEP 437: Structured Concurrency (Second
Incubation)

Java 19 introduces structured concurrency, a multi-threaded programming method. Its
purpose is to simplify multi-threaded programming through structured concurrency APIs,
not to replace them java.util.concurrent . Itis currently in the incubator stage.

Structured concurrency treats multiple tasks running in different threads as a single unit of
work, simplifying error handling, improving reliability, and enhancing observability. In
other words, structured concurrency preserves the readability, maintainability, and
observability of single-threaded code.

The basic API of structured concurrency is StructuredTaskScope to
StructuredTaskScope support splitting a task into multiple concurrent subtasks, which
are executed in their own threads, and the subtasks must complete before the main task

continues.

StructuredTaskScope The basic usage is as follows:

https://javaguide.cn/java/new-features/java20.html 9/11

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html
https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

9/21/25, 12:03 AM Java 20 new features overview | JavaGuide

try (var scope = new StructuredTaskScope<Object>()) { java
// {ERforkAEIRELIERNITFES
Future<Integer> futurel = scope.fork(taskl);
Future<String> future2 = scope.fork(task2);
/] FEHFERET
scope.join();
// BERAIETREEFENENEFMEFE
. process results/exceptions ...
} // close

O 0 N O U1l p W N PP

Structured concurrency is well suited for virtual threads, which are lightweight threads
implemented by the JDK. Many virtual threads share the same operating system thread,
allowing for a very large number of virtual threads.

The only change to structured concurrency in JDK 20 is an update to support thread-
inherited scope values created within a task scope. StructuredTaskScope This simplifies
sharing immutable data across threads, as detailed in JEP 429

JEP 432: Vector API (Fifth Incubation)

Vector computations consist of a series of operations on vectors. The Vector API is used to
express vector computations that can be reliably compiled into optimal vector instructions
on the supported CPU architecture at runtime, achieving performance superior to
equivalent scalar computations.

The goal of the Vector API is to provide users with a wide range of vector computations
that are concise, easy to use, and platform-independent.

The Vector API was originally proposed by JEP 338 and integrated into Java 16 as an
incubating API . The second round of incubation was proposed by JEP 414 and
integrated into Java 17, the third round was proposed by JEP 417 and integrated into
Java 18, and the fourth round was proposed by JEP 426 and integrated into Java 19.

This incubation of Java20 basically did not change the vector API, but only made some bug
fixes and performance enhancements, see JEP 438 for details .

https://javaguide.cn/java/new-features/java20.html 10/11

https://openjdk.org/jeps/429
https://openjdk.org/jeps/429
https://openjdk.java.net/jeps/338
https://openjdk.java.net/jeps/338
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
http://openjdk.java.net/jeps/11
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/414
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/417
https://openjdk.java.net/jeps/426
https://openjdk.java.net/jeps/426
https://openjdk.org/jeps/438
https://openjdk.org/jeps/438

9/21/25,12:03 AM

https://javaguide.cn/java/new-features/java20.html

Java 20 new features overview | JavaGuide

Recently Updated2023/10/30 12:32
Contributors: Guide , Mr.Hope

Copyright © 2025 Guide

11/11

