
JDK 21 was released on September 19, 2023. This is a very important version and a
milestone.

JDK21 is the LTS (Long Term Support) version. So far, there are four long-term support
versions: JDK8, JDK11, JDK17 and JDK21.

JDK 21 has 15 new features. This article will introduce some of the more important ones in
detail:

JEP 430: String Templates (Preview)

JEP 431: Sequenced Collections

JEP 439: Generational ZGC (generational ZGC)

JEP 440: Record Patterns

JEP 441: Pattern Matching for switch

JEP 442: Foreign Function & Memory API (Preview 3)

JEP 443: Unnamed Patterns and Variables (Preview)

JEP 444: Virtual Threads

JEP 445: Unnamed Classes and Instance Main Methods (Preview)

String Templates are currently still a preview feature in JDK 21.

String Templates provide a simpler and more intuitive way to dynamically construct
strings. By using placeholders ${} , we can embed variable values ​​directly into strings
without manual processing. At runtime, the Java compiler replaces these placeholders with
the actual variable values. Furthermore, expressions support local variables, static and
non-static fields, even methods and calculation results.

JEP 430: String Templates (Preview)

Java 21 New Features Overview
(Important)

Guide Java About 2724 words About 9 minutesNew Java Features

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 1/11

https://openjdk.org/jeps/430
https://openjdk.org/jeps/430
https://openjdk.org/jeps/431
https://openjdk.org/jeps/431
https://openjdk.org/jeps/439
https://openjdk.org/jeps/439
https://openjdk.org/jeps/440
https://openjdk.org/jeps/440
https://openjdk.org/jeps/442
https://openjdk.org/jeps/442
https://openjdk.org/jeps/442
https://openjdk.org/jeps/442
https://openjdk.org/jeps/443
https://openjdk.org/jeps/443
https://openjdk.org/jeps/444
https://openjdk.org/jeps/444
https://openjdk.org/jeps/445
https://openjdk.org/jeps/445
https://javaguide.cn/article/

In fact, String Templates exist in most programming languages:

Before Java had String Templates, we usually used string concatenation or formatting
methods to build strings:

These methods all have some disadvantages to a greater or lesser extent, such as being
difficult to read, lengthy, and complex.

Java uses String Templates for string concatenation, which allows you to embed
expressions directly in strings without any additional processing:

In the template expression above:

STR is the template processor.
\{name} These expressions will be replaced by the corresponding variable values ​​when

running.

Java currently supports three template processors:

STR: Automatically performs string interpolation, i.e. replaces each embedded
expression in the template with its value (converted to a string).

"Greetings {{ name }}!"; //Angular
`Greetings ${ name }!`; //Typescript
$"Greetings { name }!" //Visual basic
f"Greetings { name }!" //Python

//concatenation
message = "Greetings " + name + "!";

//String.format()
message = String.format("Greetings %s!", name); //concatenation

//MessageFormat
message = new MessageFormat("Greetings {0}!").format(name);

//StringBuilder
message = new StringBuilder().append("Greetings
").append(name).append("!").toString();

String message = STR."Greetings \{name}!";

typescript
1
2
3
4

java
1
2
3
4
5
6
7
8
9
10
11

java
1

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 2/11

FMT: Similar to STR, but it also accepts format specifiers, which appear to the left of the
embedded expression to control the style of the output.
RAW: Does not automatically process string templates like the STR and FMT template
processors do, but returns an StringTemplate object that contains information about
the text and expressions in the template.

In addition to the three template processors that come with JDK, you can also implement
StringTemplate.Processor the interface to create your own template processor. You

only need to inherit StringTemplate.Processor the interface and then implement
process the method.

We can use local variables, static/non-static fields and even methods as embedded
expressions:

You can also perform calculations within expressions and print the results:

To improve readability, we can split the embedded expression into multiple lines:

String name = "Lokesh";

//STR
String message = STR."Greetings \{name}.";

//FMT
String message = FMT."Greetings %-12s\{name}.";

//RAW
StringTemplate st = RAW."Greetings \{name}.";
String message = STR.process(st);

//variable
message = STR."Greetings \{name}!";

//method
message = STR."Greetings \{getName()}!";

//field
message = STR."Greetings \{this.name}!";

int x = 10, y = 20;
String s = STR."\{x} + \{y} = \{x + y}"; //"10 + 20 = 30"

java
1
2
3
4
5
6
7
8
9
10
11

java
1
2
3
4
5
6
7
8

java
1
2

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 3/11

JDK 21 introduces a new collection type: Sequenced Collections , which are collections
with a defined encounter order (no matter how many times we iterate over such a
collection, the order of elements remains fixed). Sequenced Collections provide simple
ways to manipulate the first and last elements of a collection, as well as reverse views (the
reverse order of the original collection).

Sequenced Collections includes the following three interfaces:

SequencedCollection
SequencedSet
SequencedMap

SequencedCollection The interface inherits Collection the interface and provides
methods to access, add or remove elements from both ends of the collection and obtain the
reverse view of the collection.

JEP 431: Serializing Collections

String time = STR."The current time is \{
 //sample comment - current time in HH:mm:ss
 DateTimeFormatter
 .ofPattern("HH:mm:ss")
 .format(LocalTime.now())
 }.";

interface SequencedCollection<E> extends Collection<E> {

 // New Method

 SequencedCollection<E> reversed();

 // Promoted methods from Deque<E>

 void addFirst(E);
 void addLast(E);

 E getFirst();

java
1
2
3
4
5
6

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 4/11

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/SequencedCollection.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/SequencedCollection.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/SequencedSet.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/SequencedSet.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/SequencedMap.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/SequencedMap.html

List The and Deque interface implements SequencedCollection the interface.

Here we take as ArrayList an example to demonstrate the actual usage effect:

SequencedSet The interface directly inherits SequencedCollection the interface and
overrides reversed() the method.

SortedSet and LinkedHashSet implement SequencedSet the interface.

Here we take as LinkedHashSet an example to demonstrate the actual usage effect:

 E getLast();

 E removeFirst();
 E removeLast();
}

ArrayList<Integer> arrayList = new ArrayList<>();

arrayList.add(1); // List contains: [1]

arrayList.addFirst(0); // List contains: [0, 1]
arrayList.addLast(2); // List contains: [0, 1, 2]

Integer firstElement = arrayList.getFirst(); // 0
Integer lastElement = arrayList.getLast(); // 2

List<Integer> reversed = arrayList.reversed();
System.out.println(reversed); // Prints [2, 1, 0]

interface SequencedSet<E> extends SequencedCollection<E>, Set<E> {

 SequencedSet<E> reversed();
}

LinkedHashSet<Integer> linkedHashSet = new LinkedHashSet<>
(List.of(1, 2, 3));

Integer firstElement = linkedHashSet.getFirst(); // 1
Integer lastElement = linkedHashSet.getLast(); // 3

17

java
1
2
3
4
5
6
7
8
9
10
11
12

java
1
2
3
4

java
1
2
3
4
5
6
7

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 5/11

SequencedMap The interface inherits Map the interface and provides methods for
accessing, adding or removing key-value pairs at both ends of the collection, obtaining a
collection containing a key SequencedSet , a value SequencedCollection , an entry
(key-value pair) SequencedSet , and obtaining a reverse view of the collection.

SortedMap and LinkedHashMap implements SequencedMap the interface.

Here we take as LinkedHashMap an example to demonstrate the actual usage effect:

linkedHashSet.addFirst(0); //List contains: [0, 1, 2, 3]
linkedHashSet.addLast(4); //List contains: [0, 1, 2, 3, 4]

System.out.println(linkedHashSet.reversed()); //Prints [4, 3, 2,
1, 0]

interface SequencedMap<K,V> extends Map<K,V> {

 // New Methods

 SequencedMap<K,V> reversed();

 SequencedSet<K> sequencedKeySet();
 SequencedCollection<V> sequencedValues();
 SequencedSet<Entry<K,V>> sequencedEntrySet();

 V putFirst(K, V);
 V putLast(K, V);

 // Promoted Methods from NavigableMap<K, V>

 Entry<K, V> firstEntry();
 Entry<K, V> lastEntry();

 Entry<K, V> pollFirstEntry();
 Entry<K, V> pollLastEntry();
}

8
9

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 6/11

JDK21 extends ZGC's functionality by adding generational GC. However, it is disabled by
default and needs to be enabled through configuration:

In future versions, we will officially set ZGenerational as the default value, which means
that ZGC's generational GC will be enabled by default. In later versions, non-generational
ZGC will be removed.

In a future release we intend to make Generational ZGC the default, at which point -
XX:-ZGenerational will select non-generational ZGC. In an even later release we intend
to remove non-generational ZGC, at which point the ZGenerational option will become
obsolete.

JEP 439: Generational ZGC

LinkedHashMap<Integer, String> map = new LinkedHashMap<>();

map.put(1, "One");
map.put(2, "Two");
map.put(3, "Three");

map.firstEntry(); //1=One
map.lastEntry(); //3=Three

System.out.println(map); //{1=One, 2=Two, 3=Three}

Map.Entry<Integer, String> first = map.pollFirstEntry(); //1=One
Map.Entry<Integer, String> last = map.pollLastEntry(); //3=Three

System.out.println(map); //{2=Two}

map.putFirst(1, "One"); //{1=One, 2=Two}
map.putLast(3, "Three"); //{1=One, 2=Two, 3=Three}

System.out.println(map); //{1=One, 2=Two, 3=Three}
System.out.println(map.reversed()); //{3=Three, 2=Two, 1=One}

// 启用分代ZGC
java -XX:+UseZGC -XX:+ZGenerational ...

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

bash
1
2

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 7/11

In a future release, we plan to make Generational ZGC the default, at which point -XX:-
ZGenerational will select non-generational ZGC. In an even later release, we plan to
remove non-generational ZGC, at which point the ZGenerational option will become
obsolete.

Generational ZGC can significantly reduce pause times during garbage collection and
improve application responsiveness. This is very valuable for performance optimization of
large Java applications and high-concurrency scenarios.

Record mode was first previewed in Java 19, proposed by JEP 405. It was previewed
again in JDK 20, proposed by JEP 432. Finally, Record mode was officially adopted in
JDK 21.

The Java 20 New Features Overview has already introduced the record mode in detail, so I
will not repeat it here.

Enhances the switch expression and statement in Java to allow patterns to be used in case
labels. When the pattern matches, the code corresponding to the case label is executed.

In the following code, the switch expression uses type patterns for matching.

JEP 440: Recording Mode

JEP 441: Pattern Matching in Switch

static String formatterPatternSwitch(Object obj) {
 return switch (obj) {
 case Integer i -> String.format("int %d", i);
 case Long l -> String.format("long %d", l);
 case Double d -> String.format("double %f", d);
 case String s -> String.format("String %s", s);
 default -> obj.toString();
 };
}

java
1
2
3
4
5
6
7
8
9

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 8/11

https://openjdk.org/jeps/405
https://openjdk.org/jeps/405
https://openjdk.org/jeps/432
https://openjdk.org/jeps/432
https://javaguide.cn/java/new-features/java20.html

This API enables Java programs to interoperate with code and data outside the Java
runtime. By efficiently calling external functions (that is, code outside the JVM) and safely
accessing external memory (that is, memory not managed by the JVM), this API enables
Java programs to call native libraries and process native data without the risks and
brittleness of JNI.

The foreign function and memory APIs went through their first incubation phase in Java
17, as proposed by JEP 412. They went through their second incubation phase in Java 18,
as proposed by JEP 419. They received their first preview in Java 19, as proposed by JEP
424. They received their second preview in JDK 20, as proposed by JEP 434. And they
received their third preview in JDK 21, as proposed by JEP 442 .

In the Java 19 New Features Overview , I introduced the external function and memory
API in detail, so I will not give additional introductions here.

Unnamed patterns and variables allow us to use underscores _ to represent unnamed
variables and components not used in pattern matching, aiming to improve code
readability and maintainability.

Typical scenarios for unnamed variables are exception variables in try-with-
resources statements, clauses, and loops. When a variable is not needed , you can use an
underscore to clearly identify it as unused. catch for _

JEP 442: Foreign Function and Memory API
(Third Preview)

JEP 443: Unnamed Patterns and Variables
(Preview)

try (var _ = ScopedContext.acquire()) {
 // No use of acquired resource
}
try { ... }
catch (Exception _) { ... }

java
1
2
3
4
5
6
7

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 9/11

https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/412
https://openjdk.org/jeps/419
https://openjdk.org/jeps/419
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://openjdk.org/jeps/434
https://openjdk.org/jeps/434
https://openjdk.org/jeps/442
https://openjdk.org/jeps/442
https://javaguide.cn/java/new-features/java19.html

An unnamed pattern is an unconditional pattern that is not bound to any value. An
unnamed pattern variable appears within a type pattern.

Virtual threads are a major update and must be taken seriously!

Virtual threads were first previewed in Java 19, proposed by JEP 425. They were
previewed again in JDK 20. Finally, virtual threads were officially implemented in JDK 21.

Virtual threads have been introduced in detail in the Java 20 New Features Overview , so I
will not repeat it here.

This feature mainly simplifies main the method declaration. For Java beginners, this
main method declaration introduces too many Java syntax concepts, which is not

conducive to beginners getting started quickly.

Without using this feature before defining a main method:

JEP 444: Virtual Threads

JEP 445: Unnamed Class and Instance Main
Methods (Preview)

catch (Throwable _) { ... }

for (int i = 0, _ = runOnce(); i < arr.length; i++) {
 ...
}

if (r instanceof ColoredPoint(_, Color c)) { ... c ... }

switch (b) {
 case Box(RedBall _), Box(BlueBall _) -> processBox(b);
 case Box(GreenBall _) -> stopProcessing();
 case Box(_) -> pickAnotherBox();
}

8
9
10

java
1
2
3
4
5
6
7

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 10/11

https://openjdk.org/jeps/425
https://openjdk.org/jeps/425
https://javaguide.cn/java/new-features/java20.html

To use this new feature, define a main method:

Even more concise (unnamed classes allow us to not define a class name):

Java 21 String Templates: https://howtodoinjava.com/java/java-string-templates/
Java 21 Sequenced Collections: https://howtodoinjava.com/java/sequenced-
collections/

Recently Updated2025/3/18 18:23
Contributors: Guide , Mr.Hope

refer to

Copyright © 2025 Guide

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}

class HelloWorld {
 void main() {
 System.out.println("Hello, World!");
 }
}

void main() {
 System.out.println("Hello, World!");
}

java
1
2
3
4
5

java
1
2
3
4
5

java
1
2
3

9/21/25, 12:05 AM Java 21 New Features Overview (Important) | JavaGuide

https://javaguide.cn/java/new-features/java21.html 11/11

https://howtodoinjava.com/java/java-string-templates/
https://howtodoinjava.com/java/java-string-templates/
https://howtodoinjava.com/java/sequenced-collections/
https://howtodoinjava.com/java/sequenced-collections/
https://howtodoinjava.com/java/sequenced-collections/

