
JDK 23, like JDK 22, is a non-LTS (Long Term Support) version, and Oracle will only
provide support for six months. The next long-term support version is JDK 25, which is
expected to be released in September next year.

The following figure shows the number of new features and update time brought by each
version update from JDK8 to JDK 24:

Because JDK 22 and JDK 23 have many overlapping new features, this article mainly
introduces JDK 23 and supplements some features unique to JDK 22.

JDK 23 has 12 new features:

JEP 455: Primitive Types, instanceof, and Switch in Patterns (Preview)
JEP 456: Class File API (Second Preview)
JEP 467: Markdown Documentation Comments
JEP 469: Vector API (8th incubation)
JEP 473: Stream Collectors (Second Preview)
JEP 471: Deprecate memory access methods in sun.misc.Unsafe
JEP 474: ZGC: Generational Mode by Default
JEP 476: Module Import Declarations (Preview)

Overview of new features in Java
22 & 23

Guide Java About 3984 words About 13 minutesNew Java Features

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 1/14

https://openjdk.org/jeps/455
https://openjdk.org/jeps/455
https://openjdk.org/jeps/466
https://openjdk.org/jeps/466
https://openjdk.org/jeps/467
https://openjdk.org/jeps/467
https://openjdk.org/jeps/469
https://openjdk.org/jeps/469
https://openjdk.org/jeps/473
https://openjdk.org/jeps/473
https://openjdk.org/jeps/471
https://openjdk.org/jeps/471
https://openjdk.org/jeps/474
https://openjdk.org/jeps/474
https://openjdk.org/jeps/476
https://openjdk.org/jeps/476
https://javaguide.cn/article/


JEP 477: Unnamed Class and Instance Main Methods (Preview 3)
JEP 480: Structured Concurrency (Third Preview)
JEP 481: Scoped Values ​​(Preview 3)
JEP 482: Flexible Constructor Bodies (Second Preview)

The new features of JDK 22 are as follows:

Among them, I will introduce the following three new features in detail:

JEP 423: G1 Garbage Collector Region Pinning
JEP 454: Foreign Function and Memory API
JEP 456: Unnamed Patterns and Variables
JEP 458: Launching Multi-File Source Code Programs

Prior to JEP 455, instanceof only reference types were supported, and
switch expressions and statement case labels could only use integer literals,

enumeration constants, and string literals.

As a preview feature of JEP 455, instanceof and switch fully support all primitive
types, including byte , short , char , int , long , float , double , boolean .

JDK 23

JEP 455: Primitive Types, instanceof, and Switch in
Patterns (Preview)

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 2/14

https://openjdk.org/jeps/477
https://openjdk.org/jeps/477
https://openjdk.org/jeps/480
https://openjdk.org/jeps/480
https://openjdk.org/jeps/481
https://openjdk.org/jeps/481
https://openjdk.org/jeps/482
https://openjdk.org/jeps/482
https://openjdk.org/jeps/423
https://openjdk.org/jeps/423
https://openjdk.org/jeps/454
https://openjdk.org/jeps/454
https://openjdk.org/jeps/456
https://openjdk.org/jeps/456
https://openjdk.org/jeps/458
https://openjdk.org/jeps/458


The class file API was first previewed in JDK 22, proposed by JEP 457  .

JEP 456: Class File API (Second Preview)

// 传统写法
if (i >= -128 && i <= 127) {
    byte b = (byte)i;
    ... b ...
}

// 使用 instanceof 改进
if (i instanceof byte b) {
    ... b ...
}

long v = ...;
// 传统写法
if (v == 1L) {
    // ...
} else if (v == 2L) {
    // ...
} else if (v == 10_000_000_000L) {
    // ...
}

// 使用 long 类型的 case 标签
switch (v) {
    case 1L:
        // ...
        break;
    case 2L:
        // ...
        break;
    case 10_000_000_000L:
        // ...
        break;
    default:
        // ...
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 3/14

https://openjdk.org/jeps/457
https://openjdk.org/jeps/457


The goal of the class file API is to provide a standardized API for parsing, generating, and
converting Java class files, replacing past reliance on third-party libraries (such as ASM)
for class file processing.

In JavaDoc documentation comments, you can use Markdown syntax instead of using only
HTML and JavaDoc tags.

Markdown is more concise and readable, reducing the tediousness of manually writing
HTML while retaining support for HTML elements and JavaDoc tags. This enhancement is
designed to make writing and reading API documentation comments easier without
affecting the interpretation of existing comments. Markdown provides simplified
representations of common documentation elements (such as paragraphs, lists, and links),
improving the maintainability of documentation comments and the developer experience.

JEP 467: Markdown Documentation Comments

// 创建一个 ClassFile 对象，这是操作类文件的入口。
ClassFile cf = ClassFile.of();
// 解析字节数组为 ClassModel
ClassModel classModel = cf.parse(bytes);

// 构建新的类文件，移除以 "debug" 开头的所有方法
byte[] newBytes = cf.build(classModel.thisClass().asSymbol(),
        classBuilder -> {
            // 遍历所有类元素
            for (ClassElement ce : classModel) {
                // 判断是否为方法 且 方法名以 "debug" 开头
                if (!(ce instanceof MethodModel mm
                        && 
mm.methodName().stringValue().startsWith("debug"))) {
                    // 添加到新的类文件中
                    classBuilder.with(ce);
                }
            }
        });

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 4/14



Vector computations consist of a series of operations on vectors. The Vector API is used to
express vector computations that can be reliably compiled into optimal vector instructions
on the supported CPU architecture at runtime, achieving performance superior to
equivalent scalar computations.

The goal of the Vector API is to provide users with a wide range of vector computations
that are concise, easy to use, and platform-independent.

This is a simple scalar calculation on the elements of an array:

Here is the equivalent vector calculation using the Vector API:

JEP 469: Vector API (8th incubation)

void scalarComputation(float[] a, float[] b, float[] c) {
   for (int i = 0; i < a.length; i++) {
        c[i] = (a[i] * a[i] + b[i] * b[i]) * -1.0f;
   }
}

static final VectorSpecies<Float> SPECIES = 
FloatVector.SPECIES_PREFERRED;

void vectorComputation(float[] a, float[] b, float[] c) {
    int i = 0;
    int upperBound = SPECIES.loopBound(a.length);
    for (; i < upperBound; i += SPECIES.length()) {
        // FloatVector va, vb, vc;

java
1
2
3
4
5

1
2
3
4
5
6
7

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 5/14



The stream collector was first previewed in JDK 22, proposed by JEP 461  .

This improvement enables the Stream API to support custom intermediate operations.

JEP 471 proposes to deprecate sun.misc.Unsafe memory access methods in , which will
be removed in a future version.

These unsafe methods have safe and effective alternatives:

java.lang.invoke.VarHandle : Introduced in JDK 9 (JEP 193), it provides a safe and
efficient way to operate heap memory, including object fields, class static fields, and
array elements.
java.lang.foreign.MemorySegment : Introduced in JDK 22 (JEP 454), it provides a

way to safely and efficiently access off-heap memory, and sometimes VarHandle works
in conjunction with .

These two classes are core components of the Foreign Function & Memory API, used to
manage and manipulate off-heap memory, respectively. The Foreign Function & Memory
API was officially made a standard feature in JDK 22.

JEP 473: Stream Collectors (Second Preview)

JEP 471: Deprecate memory access methods in
sun.misc.Unsafe

        var va = FloatVector.fromArray(SPECIES, a, i);
        var vb = FloatVector.fromArray(SPECIES, b, i);
        var vc = va.mul(va)
                   .add(vb.mul(vb))
                   .neg();
        vc.intoArray(c, i);
    }
    for (; i < a.length; i++) {
        c[i] = (a[i] * a[i] + b[i] * b[i]) * -1.0f;
    }
}

source.gather(a).gather(b).gather(c).collect(...)

8
9
10
11
12
13
14
15
16
17
18

java
1

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 6/14

https://openjdk.org/jeps/457
https://openjdk.org/jeps/457


import jdk.incubator.foreign.*;
import java.lang.invoke.VarHandle;

// 管理堆外整数数组的类
class OffHeapIntBuffer {

    // 用于访问整数元素的VarHandle
    private static final VarHandle ELEM_VH = 
ValueLayout.JAVA_INT.arrayElementVarHandle();

    // 内存管理器
    private final Arena arena;

    // 堆外内存段
    private final MemorySegment buffer;

    // 构造函数，分配指定数量的整数空间
    public OffHeapIntBuffer(long size) {
        this.arena  = Arena.ofShared();
        this.buffer = arena.allocate(ValueLayout.JAVA_INT, size);
    }

    // 释放内存
    public void deallocate() {
        arena.close();
    }

    // 以volatile方式设置指定索引的值
    public void setVolatile(long index, int value) {
        ELEM_VH.setVolatile(buffer, 0L, index, value);
    }

    // 初始化指定范围的元素为0
    public void initialize(long start, long n) {
        buffer.asSlice(ValueLayout.JAVA_INT.byteSize() * start,
                       ValueLayout.JAVA_INT.byteSize() * n)
              .fill((byte) 0);
    }

    // 将指定范围的元素复制到新数组
    public int[] copyToNewArray(long start, int n) {
        return buffer.asSlice(ValueLayout.JAVA_INT.byteSize() * 

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 7/14



The Z Garbage Collector (ZGC) has switched to generational mode by default, deprecating
non-generational mode and planning to remove it in a future release. This is because
generational ZGC is a better choice in most scenarios.

Module import declarations allow you to concisely import all exported packages of an
entire module from your Java code, without having to declare package imports
individually. This feature simplifies the reuse of modular libraries, especially when working
with multiple modules, by avoiding the need for numerous package import declarations
and making it easier for developers to access third-party libraries and Java base classes.

This feature is especially useful for beginners and prototype development because it does
not require developers to modularize their code while retaining compatibility with
traditional import methods, improving development efficiency and code readability.

JEP 474: ZGC: Generational Mode by Default

JEP 476: Module Import Declarations (Preview)

start,
                              ValueLayout.JAVA_INT.byteSize() * n)
                     .toArray(ValueLayout.JAVA_INT);
    }
}

// 导入整个 java.base 模块，开发者可以直接访问 List、Map、Stream 等类，而无
需每次手动导入相关包

import module java.base;

public class Example {
    public static void main(String[] args) {
        String[] fruits = { "apple", "berry", "citrus" };
        Map<String, String> fruitMap = Stream.of(fruits)
            .collect(Collectors.toMap(
                s -> s.toUpperCase().substring(0, 1),
                Function.identity()));

        System.out.println(fruitMap);
    }
}

43
44
45

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 8/14



This feature mainly simplifies main the method declaration. For Java beginners, this
main method declaration introduces too many Java syntax concepts, which is not

conducive to beginners getting started quickly.

Without using this feature before defining a main method:

To use this new feature, define a main method:

Simplifying further (unnamed classes allow us to omit the class name)

Java 19 introduces structured concurrency, a multi-threaded programming method. Its
purpose is to simplify multi-threaded programming through structured concurrency APIs,
not to replace them java.util.concurrent . It is currently in the incubator stage.

Structured concurrency treats multiple tasks running in different threads as a single unit of
work, simplifying error handling, improving reliability, and enhancing observability. In
other words, structured concurrency preserves the readability, maintainability, and

JEP 477: Unnamed Class and Instance Main Methods
(Preview 3)

JEP 480: Structured Concurrency (Third Preview)

public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, World!");
    }
}

class HelloWorld {
    void main() {
        System.out.println("Hello, World!");
    }
}

void main() {
   System.out.println("Hello, World!");
}

java
1
2
3
4
5

java
1
2
3
4
5

java
1
2
3

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 9/14



observability of single-threaded code.

The basic API of structured concurrency is StructuredTaskScope to
StructuredTaskScope support splitting a task into multiple concurrent subtasks, which

are executed in their own threads, and the subtasks must complete before the main task
continues.

StructuredTaskScope The basic usage is as follows:

Structured concurrency is well suited for virtual threads, which are lightweight threads
implemented by the JDK. Many virtual threads share the same operating system thread,
allowing for a very large number of virtual threads.

Scoped Values ​​can share immutable data within and between threads, which is better than
thread-local variables, especially when using a large number of virtual threads.

Scoped values ​​allow data to be shared safely and efficiently between components in a
larger program without resorting to method parameters.

JEP 481: Scoped Values ​​(Preview 3)

    try (var scope = new StructuredTaskScope<Object>()) {
        // 使用fork方法派生线程来执行子任务
        Future<Integer> future1 = scope.fork(task1);
        Future<String> future2 = scope.fork(task2);
        // 等待线程完成
        scope.join();
        // 结果的处理可能包括处理或重新抛出异常
        ... process results/exceptions ...
    } // close

final static ScopedValue<...> V = new ScopedValue<>();

// In some method
ScopedValue.where(V, <value>)
           .run(() -> { ... V.get() ... call methods ... });

// In a method called directly or indirectly from the lambda 
expression
... V.get() ...

java
1
2
3
4
5
6
7
8
9

java
1
2
3
4
5
6
7
8

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 10/14

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html
https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html


This feature was first proposed in JDK 22 by JEP 447: Statements before super(...)
(Preview)  .

Java requires that in a constructor, super(...) or this(...) call must appear as the
first statement. This means that we cannot initialize fields directly in the subclass
constructor before calling the superclass constructor.

Flexible constructor bodies solve this problem by allowing statements to be written within
the constructor body before calling super(..) or this(..) . These statements can
initialize fields but cannot reference the instance being constructed. This prevents subclass
fields from being incorrectly initialized when calling subclass methods in the parent class
constructor, enhancing the reliability of class construction.

This feature solves the problem that Java syntax previously restricted the organization of
constructor code, allowing developers to express the behavior of constructors more freely
and naturally. For example, they can directly validate, prepare, and share parameters in
the constructor without relying on auxiliary methods or constructors, improving the
readability and maintainability of the code.

JEP 482: Flexible Constructor Bodies (Second Preview)

class Person {
    private final String name;
    private int age;

    public Person(String name, int age) {
        if (age < 0) {
            throw new IllegalArgumentException("Age cannot be 
negative.");
        }
        this.name = name; // 在调用父类构造函数之前初始化字段
        this.age = age;
        // ... 其他初始化代码
    }
}

class Employee extends Person {
    private final int employeeId;

    public Employee(String name, int age, int employeeId) {

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 11/14

https://openjdk.org/jeps/447
https://openjdk.org/jeps/447
https://openjdk.org/jeps/447


JEP 423 proposes to implement Region Pinning in the G1 garbage collector, aiming to
reduce latency issues caused by Java Native Interface (JNI) critical regions.

Objects within JNI critical regions cannot be moved during garbage collection. G1
previously addressed this by disabling garbage collection, which resulted in blocked
threads and significant latency. By introducing a region pinning mechanism in G1's old and
young generations, the memory regions containing objects within critical regions can be
pinned while continuing to reclaim unpinned regions, eliminating the need to disable
garbage collection. This improvement significantly reduces latency, improving system
throughput and stability when interacting with the JNI.

This API enables Java programs to interoperate with code and data outside the Java
runtime. By efficiently calling external functions (that is, code outside the JVM) and safely
accessing external memory (that is, memory not managed by the JVM), this API enables
Java programs to call native libraries and process native data without the risks and
brittleness of JNI.

The foreign function and memory APIs went through their first incubation phase in Java
17, as proposed by JEP 412.  They went through their second incubation phase in Java 18,
as proposed by JEP 419.  They received their first preview in Java 19, as proposed by JEP
424.  They received their second preview in JDK 20, as proposed by JEP 434.  And they
received their third preview in JDK 21, as proposed by JEP 442  .

Finally, the feature was successfully formalized in JDK 22.

In the Java 19 New Features Overview , I introduced the external function and memory
API in detail, so I will not give additional introductions here.

JDK 22

JEP 423: G1 Garbage Collector Region Pinning

JEP 454: Foreign Function and Memory API

        this.employeeId = employeeId; // 在调用父类构造函数之前初始化字
段

        super(name, age); // 调用父类构造函数
        // ... 其他初始化代码
    }
}

19
20
21
22
23

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 12/14

https://openjdk.java.net/jeps/412
https://openjdk.java.net/jeps/412
https://openjdk.org/jeps/419
https://openjdk.org/jeps/419
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://openjdk.org/jeps/424
https://openjdk.org/jeps/434
https://openjdk.org/jeps/434
https://openjdk.org/jeps/442
https://openjdk.org/jeps/442
https://javaguide.cn/java/new-features/java19.html


Unnamed patterns and variables were previewed in JDK 21 by JEP 443  and formalized
in JDK 22.

For a detailed introduction to this new feature, see the introduction in the article Overview
of New Features in Java 21 (Important) .

Java 11 introduces JEP 330: Launching Single-File Source Code Programs  , which
enhances java the launcher's functionality to enable it to directly run a single Java source
file. Through commands java HelloWorld.java , Java can implicitly compile source
code in memory and execute it immediately, without generating files on disk .class .
This simplifies the developer workflow when writing small utility programs or learning
Java, eliminating the extra step of manual compilation.

Suppose the file Prog.java declares two classes:

java Prog.java The command compiles two classes in memory and executes main the
methods of the first class declared in the file.

This approach has a limitation: all source code for a program must be placed .java in one
file.

JEP 458: Launching Multi-File Source Code Programs  is an extension of the
functionality of JEP 330 that allows programs composed of multiple Java source files to be
run directly without an explicit compilation step.

Suppose there are two Java source files in a directory , Prog.java and Helper.java each
file declares a class:

JEP 456: Unnamed Patterns and Variables

JEP 458: Launching Multi-File Source Code Programs

class Prog {
    public static void main(String[] args) { Helper.run(); }
}

class Helper {
    static void run() { System.out.println("Hello!"); }
}

java
1
2
3
4
5
6
7

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 13/14

https://openjdk.org/jeps/443
https://openjdk.org/jeps/443
https://javaguide.cn/java/new-features/java21.html
https://javaguide.cn/java/new-features/java21.html
https://openjdk.org/jeps/330
https://openjdk.org/jeps/330
https://openjdk.org/jeps/458
https://openjdk.org/jeps/458


When you run the command , the Java launcher compiles and executes the __init__
method of the __init__ class java Prog.java in memory . Because the code in the
__init__ class references the __init__ class, the launcher automatically locates the
__init__ file on the file system , compiles the __init__ class within it , and executes it in
memory. This process is automatic, and developers do not need to explicitly call __init__
to compile all source files. Prog main Prog Helper Helper.java Helper javac

This feature makes the transition from small to large projects smoother, allowing
developers to freely choose when to introduce build tools and avoid being forced to set up
complex project structures for rapid iteration. This feature eliminates the limitation of a
single file and further simplifies the development process from a single file to a multi-file
program, making it particularly suitable for prototyping, rapid experimentation, and the
exploration stage of early projects.

Recently Updated2025/3/20 14:56
Contributors: Guide

Copyright © 2025 Guide

// Prog.java
class Prog {
    public static void main(String[] args) { Helper.run(); }
}

// Helper.java
class Helper {
    static void run() { System.out.println("Hello!"); }
}

java
1
2
3
4
5
6
7
8
9

9/21/25, 12:14 AM Java 22 & 23 New Features Overview | JavaGuide

https://javaguide.cn/java/new-features/java22-23.html#jep-469-向量-api-第八次孵化 14/14


