
In Java, the code that the JVM understands is called .h 字节码 (.class files with the
extension). It's not processor-specific, but rather targeted only at the virtual machine. The
Java language, through its bytecode format, addresses the inefficiency of traditional
interpreted languages ​​while retaining the portability of interpreted languages. This results
in highly efficient runtime performance for Java programs. Furthermore, because bytecode
isn't machine-specific, Java programs can run on computers with a variety of operating
systems without recompilation.

Languages ​​such as Clojure (a dialect of Lisp), Groovy, Scala, JRuby, and Kotlin all run on
the Java Virtual Machine. The following diagram shows how different languages ​​are
compiled into .class files by different compilers and ultimately run on the Java Virtual
Machine. .class The binary format of the files can be viewed using WinHex .

Review of bytecode

Detailed explanation of class file
structure

Guide Java About 2662 words About 9 minutesJVM

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 1/11

https://www.x-ways.net/winhex/
https://www.x-ways.net/winhex/
https://javaguide.cn/article/

It can be said that .class files are an important bridge between different languages ​​​​in the
Java virtual machine, and it is also an important reason for supporting Java cross-
platform.

According to the Java virtual machine specification, Class files are ClassFile defined by ,
which is somewhat similar to the structure of C language.

ClassFile The structure is as follows:

By analyzing ClassFile the content, we can know the composition of the class file.

Class file structure summary

ClassFile {
 u4 magic; //Class 文件的标志
 u2 minor_version;//Class 的小版本号
 u2 major_version;//Class 的大版本号
 u2 constant_pool_count;//常量池的数量
 cp_info constant_pool[constant_pool_count-1];//常量池
 u2 access_flags;//Class 的访问标记
 u2 this_class;//当前类
 u2 super_class;//父类
 u2 interfaces_count;//接口数量
 u2 interfaces[interfaces_count];//一个类可以实现多个接
口

 u2 fields_count;//字段数量
 field_info fields[fields_count];//一个类可以有多个字段
 u2 methods_count;//方法数量
 method_info methods[methods_count];//一个类可以有个多个方法
 u2 attributes_count;//此类的属性表中的属性数
 attribute_info attributes[attributes_count];//属性表集合
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 2/11

The following picture is jclasslib viewed through the IDEA plug-in, where you can see
the Class file structure more intuitively.

Using jclasslib can not only visually view the bytecode file corresponding to a class, but
also view the basic information, constant pool, interface, properties, functions and other
information of the class.

The following is a detailed introduction to some components involved in the Class file
structure.

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 3/11

The first four bytes of each class file are called the magic number. Its sole function is to
determine whether the file is a class file acceptable to the Java virtual
machine . The Java specification specifies a fixed value for the magic number:
0xCAFEBABE. If a file does not begin with this magic number, the Java virtual machine
will refuse to load it.

The four bytes following the magic number store the version number of the Class file: the
5th and 6th bytes are the minor version number , and the 7th and 8th bytes are the
major version number .

Whenever a major version of Java is released (such as Java 8, Java 9), the major version
number will increase by 1. You can use javap -v the command to quickly view the
version number information of the Class file.

A higher-level Java virtual machine can execute class files generated by a lower-level
compiler, but a lower-level Java virtual machine cannot execute class files generated by a
higher-level compiler. Therefore, during actual development, we must ensure that the JDK
version used for development is consistent with the JDK version used in the production
environment.

Following the major and minor version numbers is the constant pool, which has a number
of constant_pool_count-1 (the constant pool counter starts at 1, leaving the 0th
constant empty for special consideration, and an index value of 0 means "do

Magic Number

Class file version number (Minor & Major Version)

Constant Pool

 u4 magic; //Class 文件的标志

 u2 minor_version;//Class 的小版本号
 u2 major_version;//Class 的大版本号

 u2 constant_pool_count;//常量池的数量
 cp_info constant_pool[constant_pool_count-1];//常量池

java
1

java
1
2

java
1
2

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 4/11

not reference any constant pool item").

The constant pool primarily stores two types of constants: literals and symbolic references.
Literals are closer to the Java language's concept of constants, such as text strings and
constant values ​​declared final. Symbolic references, on the other hand, are a concept from
the perspective of compiler theory. They include the following three types of constants:

Fully qualified names of classes and interfaces
Field names and descriptors
Method name and descriptor

Each constant in the constant pool is a table. These 14 tables have one common feature:
the first bit is a u1-type flag bit - tag to identify the type of the constant,
indicating which constant type the current constant belongs to.

type tag describe

CONSTANT_utf8_info 1 UTF-8 encoded string

CONSTANT_Integer_info 3 Integer literals

CONSTANT_Float_info 4 Floating-point literals

CONSTANT_Long_info 5 Long integer literals

CONSTANT_Double_info 6 Double-precision floating-point
literals

CONSTANT_Class_info 7 A symbolic reference to a class or
interface

CONSTANT_String_info 8 String literals

CONSTANT_FieldRef_info 9 Symbolic references to fields

CONSTANT_MethodRef_info 10 Symbolic references to methods
in a class

CONSTANT_InterfaceMethodRef_info 11 Symbolic reference to a method
in an interface

CONSTANT_NameAndType_info 12 A symbolic reference to a field or
method

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 5/11

type tag describe

CONSTANT_MethodType_info 16 Mark method type

CONSTANT_MethodHandle_info 15 Represents a method handle

CONSTANT_InvokeDynamic_info 18 Represents a dynamic method
call site

.class You can use javap -v class类名 the command to view the information in the
constant pool of the file (javap -v class类名-> temp.txt : output the result to the
temp.txt file).

After the constant pool ends, the next two bytes represent the access flag, which is used to
identify some class or interface-level access information, including: whether this Class is a
class or an interface, whether it is of type public or abstract type, and if it is a class,
whether it is declared as final and so on.

Class access and property modifiers:

We define a Employee class

Access Flags

 u2 access_flags;//Class 的访问标记

package top.snailclimb.bean;
public class Employee {
 ...
}

java
1

java
1
2
3
4

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 6/11

javap -v class类名 Take a look at the class's access flags using the directive.

The inheritance relationship of a Java class is determined by the class index, parent class
index, and interface index set. The class index, parent class index, and interface index set
are arranged in order after the access flag.

The class index is used to determine the fully qualified name of this class, and the parent
class index is used to determine the fully qualified name of the parent class of this class.
Due to the single inheritance of the Java language, there is only one parent class index.
Except java.lang.Object for , all Java classes have a parent class, so except
java.lang.Object for , the parent class index of all Java classes is not 0.

The interface index set is used to describe which interfaces this class implements. These
implemented interfaces will be arranged from left to right in the interface index set in the
order of the interfaces implements (if the class itself is an interface). extends

This Class, Super Class, and Interfaces index collections

Fields

 u2 this_class;//当前类
 u2 super_class;//父类
 u2 interfaces_count;//接口数量
 u2 interfaces[interfaces_count];//一个类可以实现多个接
口

 u2 fields_count;//字段数量
 field_info fields[fields_count];//一个类会可以有个字段

java
1
2
3
4

java
1
2

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 7/11

The field info table describes the variables declared in an interface or class. Fields include
class-level variables and instance variables, but do not include local variables declared
within methods.

The structure of field info (field table):

access_flags: The scope of the field (,, public modifiers), whether it is an instance
variable or a class variable (modifiers), whether it can be serialized (transient modifier),
mutability (final), visibility (volatile modifier, whether to force reading and writing from
main memory). private protected static
name_index: a reference to the constant pool, representing the name of the field;
descriptor_index: a reference to the constant pool, representing the descriptor of the
field and method;
attributes_count: A field may also have some additional attributes, attributes_count
stores the number of attributes;
attributes[attributes_count]: stores the specific content of specific attributes.

In the above information, each modifier is a Boolean value; it either has a modifier or not,
making it well-suited for use as a flag. However, the field name and data type cannot be
fixed and can only be described by referencing constants in the constant pool.

The value of the access_flag field:

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 8/11

methods_count indicates the number of methods, and method_info indicates the method
table.

The class file storage format uses almost identical descriptions for methods and fields. The
structure of a method table is similar to that of a field table, consisting of an access flag, a
name index, a descriptor index, and a property table set.

method_info (method table) structure:

The access_flag value of the method table:

Methods collection

 u2 methods_count;//方法数量
 method_info methods[methods_count];//一个类可以有个多个方法

java
1
2

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 9/11

Note: Because volatile modifiers and transient modifiers cannot modify methods,
there are no corresponding flags in the access flags of the method table. However,
keywords such as synchronized , native , abstract and so on are added to modify
methods, so there are more flags corresponding to these keywords.

Class files, field tables, and method tables can all carry their own set of attribute tables to
describe scenario-specific information. Unlike other data items in class files, which have
strict ordering, length, and content requirements, attribute tables have slightly looser
restrictions. There's no strict ordering requirement for attribute tables. Furthermore, any
compiler implementation can write custom attribute information to an attribute table, as
long as the name doesn't overlap with existing ones. The Java Virtual Machine will ignore
any attributes it doesn't recognize at runtime.

Practical Java Virtual Machine

Attributes collection

refer to

 u2 attributes_count;//此类的属性表中的属性数
 attribute_info attributes[attributes_count];//属性表集合

java
1
2

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 10/11

Chapter 4. The class File Format - Java Virtual Machine Specification:
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
Example analysis of the file structure of JAVA CLASS:
https://coolshell.cn/articles/9229.html
Java Virtual Machine Principles Diagram 1.2.2, Detailed Explanation of the Constant
Pool in the Class File (Part 1): https://blog.csdn.net/luanlouis/article/details/39960815

Recently Updated2025/6/30 15:20
Contributors: SnailClimb , tianyu94 , Shuang Kou , shuang.kou , what , guide , hailong.sha , Gale , Guide

, Erzbir , Mr.Hope , wym199807 , fu , Kisa-Dong

Copyright © 2025 Guide

9/22/25, 11:02 PM Detailed explanation of class file structure | JavaGuide

https://javaguide.cn/java/jvm/class-file-structure.html 11/11

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://coolshell.cn/articles/9229.html
https://coolshell.cn/articles/9229.html
https://blog.csdn.net/luanlouis/article/details/39960815
https://blog.csdn.net/luanlouis/article/details/39960815
https://blog.csdn.net/luanlouis/article/details/39960815

