9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

Detailed explanation of class file
structure

2 Guide &® Java € Jvm @ About 2662 words X About 9 minutes

Review of bytecode

In Java, the code that the JVM understands is called .h %583 (.class files with the
extension). It's not processor-specific, but rather targeted only at the virtual machine. The
Java language, through its bytecode format, addresses the inefficiency of traditional
interpreted languages while retaining the portability of interpreted languages. This results
in highly efficient runtime performance for Java programs. Furthermore, because bytecode
isn't machine-specific, Java programs can run on computers with a variety of operating
systems without recompilation.

Languages such as Clojure (a dialect of Lisp), Groovy, Scala, JRuby, and Kotlin all run on
the Java Virtual Machine. The following diagram shows how different languages are
compiled into .class files by different compilers and ultimately run on the Java Virtual
Machine. .class The binary format of the files can be viewed using WinHex

Java EF .
. —) —
(.java) Javac

Groovy =R
—_— — .
(.groovy) groovyc — JVM —» Windows
KDT}TT)EE —_— kotling ———tmp .class —_— JVM —_— Mac
JRuby T2 —3 JVM —_— Linux

(.rb) —_— jruby —_—

G W —

https://javaguide.cn/java/jvm/class-file-structure.html 1/11

https://www.x-ways.net/winhex/
https://www.x-ways.net/winhex/
https://javaguide.cn/article/

9/22/25,11:02 PM

It can be said that .class files are an important bridge between different languages in the

Detailed explanation of class file structure | JavaGuide

Java virtual machine, and it is also an important reason for supporting Java cross-

platform.

Class file structure summary

According to the Java virtual machine specification, Class files are ClassFile defined by,

which is somewhat similar to the structure of C language.

ClassFile The structure is as follows:

ClassFile {

1

) ud

3 u2

4 u2

5 u2

6 cp_info

7 u2

8 u2

9 u2

10 u2

11 u2

12 M

13 u2

14 field_info
15 u2

16 method_info
17 u2

18

java
magic; //Class X{RIHRE
minor_version;//Class B9/ \RAS
major_version;//Class HIKIRAS
constant_pool_count;//EEMHEE
constant_pool[constant_pool_count-11;//&S;
access_flags;//Class E9iAEHRiC
this_class;//HaiZE
super_class;//R%E
interfaces_count;//#EO%H=
interfaces[interfaces_count];//—"FERI LI ZME

fields_count;//FE#H=
fields[fields_count];//—1EAMBEZNFE
methods_count;//FiE#E

methods [methods_count];//—1TEEUENZ T HE
attributes_count; //ILtZEMBE MR FRIE IR

attribute_info attributes[attributes_countl;//BMRES

By analyzing ClassFile the content, we can know the composition of the class file.

https://javaguide.cn/java/jvm/class-file-structure.html

2/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

CA FE BA BE Minor Major
VEersion version

Constant Pool

Count Constant Pool
Access flags This class Super class

Interface Intefaces
Count
Field :
Count Fields

Method Methods
Count

Attribute Atrributes
Count

The following picture is jclasslib viewed through the IDEA plug-in, where you can see
the Class file structure more intuitively.

jclasslib: BlogApplication.java
X €« S
i —wi=8 RIS

e R

8 BRI
PR i,

h
Hik

cp_info #2
mit

cp_info #4

FETH:
FiEitE:
RE it

Using jclasslib can not only visually view the bytecode file corresponding to a class, but
also view the basic information, constant pool, interface, properties, functions and other
information of the class. .

The following is a detailed introduction to some components involved in the Class file
structure.

https://javaguide.cn/java/jvm/class-file-structure.html

3/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

Magic Number
1 ud magic; //Class X{HETRE java

The first four bytes of each class file are called the magic number. Its sole function is to
determine whether the file is a class file acceptable to the Java virtual
machine . The Java specification specifies a fixed value for the magic number:
0xCAFEBABE. If a file does not begin with this magic number, the Java virtual machine
will refuse to load it.

Class file version number (Minor & Major Version)

u2 minor_version;//Class HY/NRAS java
u2 major_version;//Class HIKKRAS

The four bytes following the magic number store the version number of the Class file: the
5th and 6th bytes are the minor version number , and the 7th and 8th bytes are the
major version number .

Whenever a major version of Java is released (such as Java 8, Java 9), the major version
number will increase by 1. You can use javap -v the command to quickly view the
version number information of the Class file.

A higher-level Java virtual machine can execute class files generated by a lower-level
compiler, but a lower-level Java virtual machine cannot execute class files generated by a
higher-level compiler. Therefore, during actual development, we must ensure that the JDK
version used for development is consistent with the JDK version used in the production
environment.

Constant Pool

u2 constant_pool_count;//E St E java
5 cp_info constant_pool[constant_pool_count-1];//E &

Following the major and minor version numbers is the constant pool, which has a nun.. .

of constant_pool_count-1 (the constant pool counter starts at 1, leaving the oth
constant empty for special consideration, and an index value of 0 means "do

https://javaguide.cn/java/jvm/class-file-structure.html 4/11

9/22/25,11:02 PM

not reference any constant pool item").

Detailed explanation of class file structure | JavaGuide

The constant pool primarily stores two types of constants: literals and symbolic references.

Literals are closer to the Java language's concept of constants, such as text strings and

constant values declared final. Symbolic references, on the other hand, are a concept from

the perspective of compiler theory. They include the following three types of constants:

e Fully qualified names of classes and interfaces

e Field names and descriptors
e Method name and descriptor

Each constant in the constant pool is a table. These 14 tables have one common feature:
the first bit is a ui-type flag bit - tag to identify the type of the constant,
indicating which constant type the current constant belongs to.

type
CONSTANT utf8 info
CONSTANT_ Integer_info
CONSTANT _Float_info

CONSTANT_ Long_info

CONSTANT Double_info

CONSTANT_Class_info

CONSTANT_ String_ info

CONSTANT _FieldRef info

CONSTANT MethodRef info

CONSTANT InterfaceMethodRef info

CONSTANT_NameAndType_info

https://javaguide.cn/java/jvm/class-file-structure.html

tag

10

11

12

describe
UTF-8 encoded string
Integer literals
Floating-point literals
Long integer literals

Double-precision floating-point
literals

A symbolic reference to a class or
interface

String literals
Symbolic references to fields

Symbolic references to methods
in a class

Symbolic reference to a method
in an interface

A symbolic reference to a fielc .
method

5/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

type tag describe
CONSTANT_MethodType_info 16 Mark method type
CONSTANT MethodHandle info 15 Represents a method handle

Represents a dynamic method

CONSTANT_ InvokeDynamic_info 18 .
call site

.class Youcanuse javap -v class#% the command to view the information in the
constant pool of the file (javap -v class#®®&-> temp.txt : output the result to the
temp.txt file).

Access Flags

1 u2 access_flags;//Class H9IAIEFFIC java

After the constant pool ends, the next two bytes represent the access flag, which is used to
identify some class or interface-level access information, including: whether this Class is a
class or an interface, whether it is of type public or abstract type, and if it is a class,
whether it is declared as final and so on.

Class access and property modifiers:

| Flag Name || Value || Interpretation

|ﬁ.l:l:_P1rBI_I|: ||DxDﬂD1||Declared public; may be accessed from outside its package.

|M:l:_FIHﬁ.L ||D>;Dﬂ1D||Declared final; no subclasses allowed.

|AI:|:_SUPER ||U>;D{I'2[]||Treat superclass methods specially when invoked by the invoxesoecial instruction

|ﬁ.I:E_ﬁ.BSTRﬁ.J:T ||D>;04E]D||Declared abstract; must not be instantiated.

|AEC_SYHT]-EETIE ||Dx1ﬂDD||Declared synthetic; not present in the source code.
|AI:|:_A111¢I:ITATIDH||U>;2{I'DD||Declared as an annotation type.
|ACIZ_EH'I.[I'|'[||Ux4ﬂUD||Declared as an emum type.

|
|
|
|
|ﬁ.CIZ_IHTEEFACE ||EI>=;DEEID||I5 an interface, not a class. |
|
|
|
|

We define a Employee class

1 package top.snailclimb.bean; Java
public class Employee {

: ®

4 ¥

https://javaguide.cn/java/jvm/class-file-structure.html 6/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

javap -v classz## Take alook at the class's access flags using the directive.

Jtop/snailclimb/bean/Emplo

Fieldref

Fieldref
Fieldref

This Class, Super Class, and Interfaces index collections

1 u2 this_class;// a1k java
5 u2 super_class;//R%

3 u2 interfaces_count;//#EO#=

4 u2 interfaces[interfaces_count]l;//—1"ERI UL Z %

A

The inheritance relationship of a Java class is determined by the class index, parent class
index, and interface index set. The class index, parent class index, and interface index set
are arranged in order after the access flag.

The class index is used to determine the fully qualified name of this class, and the parent
class index is used to determine the fully qualified name of the parent class of this class.
Due to the single inheritance of the Java language, there is only one parent class index.
Except java.lang.Object for, all Java classes have a parent class, so except
java.lang.0Object for, the parent class index of all Java classes is not 0.

The interface index set is used to describe which interfaces this class implements. These
implemented interfaces will be arranged from left to right in the interface index set in the
order of the interfaces implements (if the class itself is an interface). extends

1?1(31(1E; P
2
u2 fields_count;//FEHE java
5 field_info fields[fields_count];//—1TEESATUEITFE

https://javaguide.cn/java/jvm/class-file-structure.html 7/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

The field info table describes the variables declared in an interface or class. Fields include
class-level variables and instance variables, but do not include local variables declared

within methods.

The structure of field info (field table):

field info {

u2 access flags;

u2 name index;

uz descriptor index;
u2 attributes count;

attribute info attributes[attributes count];

e access_flags: The scope of the field (,, public modifiers), whether it is an instance
variable or a class variable (modifiers), whether it can be serialized (transient modifier),
mutability (final), visibility (volatile modifier, whether to force reading and writing from
main memory). private protected static

e name_index: a reference to the constant pool, representing the name of the field;

e descriptor_index: a reference to the constant pool, representing the descriptor of the
field and method,;

e attributes_ count: A field may also have some additional attributes, attributes_ count
stores the number of attributes;

e attributes[attributes_ count]: stores the specific content of specific attributes.

In the above information, each modifier is a Boolean value; it either has a modifier or not,
making it well-suited for use as a flag. However, the field name and data type cannot be
fixed and can only be described by referencing constants in the constant pool.

The value of the access_ flag field:

https://javaguide.cn/java/jvm/class-file-structure.html 8/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 ||Declared public; may be accessed from outside its package.

ACC_PRIVATE ||0x0002‘|DecIared private; usable only within the defining class.

|ACC_PR0TECTED”0X0004uDecIared protected; may be accessed within subclasses.

|ACC_STATIC ”0x0008||DecIared static.

Declared £inal; never directly assigned to after object construction (JLS

ACC FINAL
- §17.5).

0x0010‘

ACC_VOLATILE ||0x0040||Declared volatile; cannot be cached.

ACC_TRANSIENT"OXUOBO"Declared transient; not written or read by a persistent object manager.

ACC_SYNTHETIC"OX1 000||Declared synthetic; not present in the source code.

ACC_ENUM “0x4000||DecIared as an element of an enum.

Methods collection

1 u2 methods_count;//AEHE
5 method_info methods [methods_count];//—1TERIMUENSZS M AE

java

methods_ count indicates the number of methods, and method_ info indicates the method

table.

The class file storage format uses almost identical descriptions for methods and fields. The
structure of a method table is similar to that of a field table, consisting of an access flag, a

name index, a descriptor index, and a property table set.

method_info (method table) structure:

method info {

u2 access flags;

u2 name index;

uz2 descriptor index;
u2 attributes count;

attribute info attributes[attributes count];

The access_flag value of the method table:

https://javaguide.cn/java/jvm/class-file-structure.html

9/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

| Flag Name " Value || Interpretation
|ACC_PUBLIC ‘|0x0001 ”Declared public; may be accessed from outside its package.
lACC_PRIVATE u0x0002“{)eclared private; accessible only within the defining class.

|
|
|
|ACC_PROTECTED "0x0004||Declared protected; may be accessed within subclasses. |
[acc_starzc [0x0008 [Declared stat ic. |
"0x001 0 “Declared final; must not be overridden (§5.4.5). |
|ACC_SYNCHRONIZED"OXOOZO||Declared synchronized:; invocation is wrapped by a monitor use.|
| |

|

|

|

|

|

lACC_FINAL

|ACC_BRIDGE |0x0040||A bridge method, generated by the compiler.

|ACC_VARARGS ‘|0x0080||Declared with variable number of arguments.

|ACC_NATIVE “0x0100||Declared native; implemented in a language other than Java.
|ACC_ABSTRACT "0x0400|]Declared abstract; no implementation is provided.
IACC_STRICT u0x0800||Declared strictfp; floating-point mode is FP-strict.

|ACC_SYNTHETIC "0x1 000||Declared synthetic; not present in the source code.

Note: Because volatile modifiers and transient modifiers cannot modify methods,
there are no corresponding flags in the access flags of the method table. However,
keywords such as synchronized , native , abstract and so on are added to modify
methods, so there are more flags corresponding to these keywords.

Attributes collection

1 u2 attributes_count; //ItbZEHBE MR FHIE LR java
> attribute_info attributes[attributes_countl]l;//EBM&EES

Class files, field tables, and method tables can all carry their own set of attribute tables to
describe scenario-specific information. Unlike other data items in class files, which have
strict ordering, length, and content requirements, attribute tables have slightly looser
restrictions. There's no strict ordering requirement for attribute tables. Furthermore, any
compiler implementation can write custom attribute information to an attribute table, as
long as the name doesn't overlap with existing ones. The Java Virtual Machine will ignore
any attributes it doesn't recognize at runtime.

refer to

e Practical Java Virtual Machine

https://javaguide.cn/java/jvm/class-file-structure.html 10/11

9/22/25,11:02 PM Detailed explanation of class file structure | JavaGuide

e Chapter 4. The class File Format - Java Virtual Machine Specification:
https://docs.oracle.com/javase/specs/jvms/se8 /html/jvms-4.html

e Example analysis of the file structure of JAVA CLASS:
https://coolshell.cn/articles/9229.html

e Java Virtual Machine Principles Diagram 1.2.2, Detailed Explanation of the Constant
Pool in the Class File (Part 1): https://blog.csdn.net/luanlouis/article/details/39960815

JavaGuideEA RS

(g8 FKJavaGuide)
1. 2RBEREE “PDF”RIER LIPDFE R F 1
2, PRESEAESE “FIRE" KW JavaR 3] BERHIR
3. KREEEEE“ARFRAAJavaFFiFMBESE
4, AREREESE“/\RI” K Javalid RE+EE

Recently Updated2025/6/30 15:20
Contributors: SnailClimb , tianyu94 , Shuang Kou , shuang.kou , what , guide , hailong.sha , Gale , Guide
, Erzbir , Mr.Hope , wym199807 , fu , Kisa-Dong

Copyright © 2025 Guide

https://javaguide.cn/java/jvm/class-file-structure.html 11/11

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://coolshell.cn/articles/9229.html
https://coolshell.cn/articles/9229.html
https://blog.csdn.net/luanlouis/article/details/39960815
https://blog.csdn.net/luanlouis/article/details/39960815
https://blog.csdn.net/luanlouis/article/details/39960815

