9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

Detailed Explanation of Java
Memory Areas (Key Points)

2 Guide &® Java € Jvm @ About 7473 words R About 25 minutes

This is a small advertisement that may be useful to you

« Interview special edition : Friends who are preparing for Java interviews can consider
the interview special edition: ""Java Interview Guide" (very high quality, specially
designed for interviews, best used with JavaGuide).

« Knowledge Planet : Technical Column/One-on-one Questions/Resume
Modification/Job Hunting Guide/Interview Check-in/Irregular Benefits, welcome to join
the JavaGuide official Knowledge Planet .

Unless otherwise specified, all instructions refer to HotSpot virtual machines.

This article summarizes and supplements the article "In-depth Understanding of Java
Virtual Machine: JVM Advanced Features and Best Practices".

Common interview questions:

e Introducing Java memory areas (runtime data areas)

» The process of creating a Java object (five steps, it is recommended to be able to write
it out silently and know what the virtual machine does at each step)

* Two ways to access and locate objects (handle and direct pointer)

Preface

For Java programmers, the virtual machine's automatic memory management mechanism
eliminates the need to write corresponding delete/free operations for every new operation,
as C/C++ programmers do. This reduces the risk of memory leaks and overflows. Because
Java programmers hand over memory control to the Java virtual machine, troubleshooting
memory leaks and overflows can be a daunting task if you don't understand how the virtual
machine uses memory.

https://javaguide.cn/java/jvm/memory-area.html 1725

https://javaguide.cn/zhuanlan/java-mian-shi-zhi-bei.html
https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/article/

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

Runtime data area

When executing a Java program, the Java virtual machine divides the memory it manages
into several different data areas.

JDK 1.8 is slightly different from previous versions. Here we use JDK 1.7 and JDK 1.8 as
examples.

JDK 1.7 :

https://javaguide.cn/java/jvm/memory-area.html 2/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

IBITREERE (JDK1.7) REHE

HiEE
{Method Area)

#
(Heap)

FrsREt
(String Constant Pool)

BT R
{Runtime Constant Pool)

SENLE

THATF

JDK 1.8:

https://javaguide.cn/java/jvm/memory-area.html 3/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

BT EEREE (JDK1.8) REHE

i
(Heap)

FHEREL
(String Constant Pool)

24E: JavaGuide e

javaguide.cn /

FHAF
FLEE
(MetaSpace)
———

(Runtime Constant Pool)

Thread-private:

e Program Counter
¢ Virtual Machine Stack
¢ Native Method Stack

Threads shared:

e heap
e Method Area

e Direct memory (part of the non-runtime data area)

https://javaguide.cn/java/jvm/memory-area.html

4/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

The Java Virtual Machine specification is quite liberal with regard to runtime data areas.
For example, the heap can be contiguous or discontiguous. The heap size can be fixed or
expandable at runtime. Virtual machine implementers can use any garbage collection
algorithm to manage the heap, or even opt out of garbage collection altogether.

Program Counter

The program counter is a small memory location that can be thought of as an indicator of
the line number of the bytecode being executed by the current thread. The bytecode
interpreter selects the next bytecode instruction to execute by changing the value of this
counter. Functions such as branching, looping, jumping, exception handling, and thread
recovery all rely on this counter.

In addition, in order to restore to the correct execution position after thread switching,
each thread needs to have an independent program counter. The counters of each thread
do not affect each other and are stored independently. We call this type of memory area
"thread-private" memory.

From the above introduction, we know that the program counter has two main functions:

e The bytecode interpreter reads instructions in sequence by changing the program
counter, thereby implementing code flow control, such as sequential execution,
selection, looping, and exception handling.

e In the case of multiple threads, the program counter is used to record the location of the
current thread execution, so that when the thread is switched back, it can know where
the thread last ran.

. Note: The program counter is the only OutOfMemoryError memory area that does not

appear. Its life cycle is created when the thread is created and dies when the thread ends.

Java Virtual Machine Stack

Like the program counter, the Java virtual machine stack (hereinafter referred to as the
stack) is also thread-private. Its life cycle is the same as that of the thread. It is created
when the thread is created and dies when the thread dies.

The stack is definitely a core part of the JVM runtime data area. Except for some native
method calls that are implemented through the local method stack (mentioned later)
other Java method calls are implemented through the stack (which also needs to be
coordinated with other runtime data areas such as the program counter).

https://javaguide.cn/java/jvm/memory-area.html 5/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

The data of method calls needs to be passed through the stack. For each method call, a
corresponding stack frame will be pushed into the stack. After each method call, a stack
frame will be popped out.

The stack is composed of stack frames, each of which contains: a local variable table, an
operand stack, dynamic links, and method return addresses. Similar to the stack in data
structures, both are first-in-last-out data structures, supporting only two operations: pop

and push.

iRE: JavaGuide
i

1: javaguide.cn

The local variable table mainly stores various data types known at compile time
(boolean, byte, char, short, int, float, long, double) and object references (reference type,
which is different from the object itself, may be a reference pointer pointing to the starting
address of the object, or it may point to a handle representing the object or other locations
related to this object). .

https://javaguide.cn/java/jvm/memory-area.html 6/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

int

short

double

float

char

reference

The operand stack is primarily used as a transit point for method calls, storing
intermediate calculation results generated during method execution. Temporary variables
generated during the calculation process are also placed on the operand stack.

Dynamic linking primarily serves scenarios where a method needs to call other
methods. The constant pool of a class file stores a large number of symbolic references,
such as symbolic references to method references. When a method calls another method,
the symbolic references to the method in the constant pool must be converted into direct
references to the method's memory address. Dynamic linking is the process of converting
symbolic references into direct references to the method being called. This process is also
known as dynamic linking .

https://javaguide.cn/java/jvm/memory-area.html 7/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

SHHE (WERIETREERINGESIR) -

Thread-1 |
Thread-2 |
Thread-2
PCETEEE
i I,
HiktE %
Rtk
HEESR

L1 -

: ==
590 SwsEs i
see L [[T T p—
ERESE SRS i string constants
i
1
I

* [onethod reerences |

|
|
| name and type
I

|

I

I

I

I .

I

I

1

1

1 .

I numberic constants
|

I class references
I

I

I

I

1

1

While stack space isn't infinite, it generally doesn't present a problem during normal calls.

However, if a function call falls into an infinite loop, too many frames can be pushed onto

the stack, occupying too much space and causing the stack to become too deep. If the

thread's requested stack depth exceeds the maximum Java Virtual Machine stack depth,
StackOverFlowError an error is thrown.

Java methods have two ways to return: a normal return statement and an exception.
Regardless of the return method, the stack frame is popped. In other words, the stack
frame is created when the method is called and destroyed when the method
ends. Whether a method completes normally or with an exception, it is
considered a method completion.

In addition StackOverFlowError to errors, stack errors may also occur
OutOfMemoryError . This is because if the memory size of the stack can be dynamically
expanded, the virtual machine cannot apply for sufficient memory space when dynamr .

expanding the stack, and OutOfMemoryError an exception is thrown.

https://javaguide.cn/java/jvm/memory-area.html 8/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

To briefly summarize, there are two possible errors that may occur in the stack during
program execution:

e StackOverFlowError : If the stack memory size does not allow dynamic expansion,
then when the thread requests the stack depth to exceed the maximum depth of the
current Java virtual machine stack, StackOverFlowError an error is thrown.

e OQutOfMemoryError : If the memory size of the stack can be expanded dynamically, then
when the virtual machine cannot apply for sufficient memory space when dynamically
expanding the stack, OutOfMemoryError an exception is thrown.

£ (JavafERIHUTED &, XHXASWAF KR TR ARG : RELREERIARRERT E

BIHLIT Fo VEOIREE, K4l H StackOverflowError 5t s 11 Javaz LR 25 ST bAshAy B 2], ey
R T35 1)2 05 £ 9 77 2 91l HH OutO M emory Error - 2 .

[1] B T ka7 MR B A Rt R 45, AR A (38 8 5 rh il 2o WU AT VR A VAR -

[2] HotSpotiE WL AR RN AT LAS)ES R, LART#IClassiclE LB & T LL. FTLAZEHot Spot KE 1
BLERA S T LB S B 175 20 utOfM emory Error 5t —— H B F2 B AR 25 [R] iR Th T 3R
£HOOM, {ERWIRHFNBAN, FRZELSHIOOM K, J& IS & R T X Fh
Blo AFEE2RENT X B RR RAT RN, ST 2R R R .

Native Method Stack

The native method stack is very similar to the virtual machine stack, but the difference is
that the virtual machine stack serves the virtual machine to execute Java
methods (that is, bytecode), while the native method stack serves the native
methods used by the virtual machine. In the HotSpot virtual machine, the native
method stack and the Java virtual machine stack are combined into one.

When a native method is executed, a stack frame is also created on the native method stack
to store the local variable table, operand stack, dynamic link, and exit information of the
native method.

After the method is executed, the corresponding stack frame will be popped out and the
memory space will be released. Two errors, StackOverFlowError and, may also
occur. OutOfMemoryError

heap

The Java heap is the largest memory area managed by the Java Virtual Machine. It is .
memory area shared by all threads and is created when the virtual machine starts. This
memory area's sole purpose is to store object instances; almost all object

https://javaguide.cn/java/jvm/memory-area.html 9/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

instances and arrays are allocated here.

In the Java world, almost all objects are allocated on the heap. However, with the
development of JIT compilers and the maturation of escape analysis technology, stack
allocation and scalar substitution optimization techniques are leading to subtle changes,
making the heap allocation of all objects less absolute. Starting with JDK 1.7, escape
analysis has been enabled by default. If object references in certain methods are not
returned or used externally (that is, they do not escape), then the objects can be allocated

directly on the stack.

The Java heap is the primary area managed by the garbage collector, and is therefore also
called the GC heap . From a garbage collection perspective, since most modern collectors
use a generational garbage collection algorithm, the Java heap can be further subdivided
into the Young and Old generations; and more specifically, into the Eden, Survivor, and
Old spaces. This further division aims to improve memory recovery or speed up memory

allocation.

In JDK 7 and prior versions, the heap memory is usually divided into the following three

parts:

1. Young Generation Memory
2. Old Generation
3. Permanent Generation

The Eden area and the two Survivor areas So and S1 shown in the figure below all belong to
the new generation, the middle layer belongs to the old generation, and the bottom layer

belongs to the permanent generation.

Hotspot VM 4545 Hotspot VM 445
(JDK1.7) (JDK1.8)
Eden sS@ S1 Eden sSe S1
Tenured Tenured
- ™ P ™
PermGen(Permanent Generation) MetaSpace .
- J ¥ J

https://javaguide.cn/java/jvm/memory-area.html 10/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

Since JDK 8, PermGen has been replaced by Metaspace, which uses local
memory. (I'll explain this in detail in the Method Area section.)

In most cases, objects are first allocated in the Eden area. After a new generation garbage
collection, if the object is still alive, it will be moved to So or S1, and its age will be
incremented by 1 (after moving from Eden to Survivor, the object's initial age becomes 1).
When its age reaches a certain level (15 by default), it will be promoted to the old
generation. The age threshold for object promotion to the old generation can be -
XX:MaxTenuringThreshold set using the parameter . However, the value should be
between 0 and 15, otherwise the following error will occur:

1 MaxTenuringThreshold of 20 is invalid; must be between @ and 15 bash

Why can the age range only be 0-15?

Because the area recording the age is in the object header, the size of this area is usually 4
bits. The maximum binary number that can be represented by these 4 bits is 1111, which is
15 in decimal. Therefore, the age of an object is limited to o to 15.

Here we briefly introduce it in detail in combination with object layout.

In the HotSpot VM, the memory layout of objects can be divided into three areas: the
object header, instance data, and alignment padding. The object header consists of two
parts: the mark word and the type pointer. A detailed description of the object memory
layout will be provided later, so I won't repeat it here.

This age information is stored in the mark field (the mark field also stores other
information about the object itself, such as hash code, lock status information, etc.).
markOop.hpp The structure of the mark word is defined as follows:

https://javaguide.cn/java/jvm/memory-area.html 11/25

9/22/25,10:34 PM

64 bits:

unused:25 hash:31 ——>| unused:1 - biased lock:1 lock:2
JavaThread*:54 epoch:2 unused:1 - biased_lock:1 lock:2
PromotedObject*:61 promo_bits:3

size:64

Java Memory Areas Explained (Key Points) | JavaGuide

hash:25 eH biased lock:1 lock:2
JavaThread*:23 epoch:: - biased lock:1

normal object)
biased object)
CMS free block)
CMS promoted object)

size:32

(
(
(
PromotedObjectx:29 (

normal object)
biased object)
CMS promoted object)
CMS free block)

(
(
(
(

unused:25 hash:31 —>| cms_free:? - biased_lock:1 (COOPs && normal object)
JavaThreadx:54 epoch:2 cms_free:! - biased_lock:1 (COOPs && biased object)
narrowOop:32 unused:24 cms_free:1 unused:4 promo_bits:3 (COOPs && CMS promoted object
unused:21 size:35 —->| cms_free:1 unused:7 (COOPs && CMS free block)

You can see that the size occupied by the object age is indeed 4 bits.

% Correction (see: issue552) : "When Hotspot traverses all objects, it

accumulates the size they occupy from young to large according to their age. When the

accumulated size exceeds half of the Survivor area when it reaches a certain age, the

smaller MaxTenuringThreshold value of this age and is taken as the new promotion
age threshold."
The code for dynamic age calculation is as follows

O o N O Ul W IN

el el =
w N R

uint ageTable::compute_tenuring_threshold(size_t C++
survivor_capacity) {
//survivor_capacitygZsurvivorZgryk/
size_t desired_survivor_size = (size_t) ((((double)
survivor_capacity)xTargetSurvivorRatio)/100);//TargetSurvivorRatio
750
size_t total = 0;
uint age = 1;
while (age < table_size) {
total += sizeslagel;//sizesEHAE B NERERITRA/N
if (total > desired_survivor_size) break;
age++;

https://javaguide.cn/java/jvm/memory-area.html 12/25

https://github.com/Snailclimb/JavaGuide/issues/552
https://github.com/Snailclimb/JavaGuide/issues/552

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

by

uint result = age < MaxTenuringThreshold ? age :
MaxTenuringThreshold;

The most common error here is OutOfMemoryError the error, and there are several
manifestations of this error, such as:

1. java.lang.OutOfMemoryError: GC Overhead Limit Exceeded : This error occurs
when the JVM spends too much time performing garbage collection and can only
reclaim little heap space.

2. java.lang.OutOfMemoryError: Java heap space This error occurs when there is
insufficient heap space to store a new object. (This is related to the configured
maximum heap size and is subject to the physical memory available. The maximum
heap size can be —Xmx configured via a parameter; if not specified, the default value will
be used. See Default Java 8 max heap size for details.)

Method Area

The methc X --zo iz lo7iootooon oo WA et - Aot oo o Ao Do o

shared by all threads.

The Java Virtual Machine Specification only defines the concept of a method area and its
purpose. Exactly how the method area is implemented is a matter for the virtual machine
itself. This means that different virtual machine implementations implement the method
area differently.

When the virtual machine wants to use a class, it reads and parses the class file to obtain
relevant information and then stores this information in the method area. The method area
stores data such as class information loaded by the virtual machine, field
information, method information, constants, static variables, and the code
cache compiled by the just-in-time compiler .

What is the relationship between the method area, the permanent generation,
and the metaspace? The relationship between the method area, the permanent
generation, and the metaspace is very similar to the relationship between interfaces ¢
classes in Java. A class implements an interface, and the class can be considered the
permanent generation and the metaspace, while the interface can be considered the

https://javaguide.cn/java/jvm/memory-area.html 13/25

https://stackoverflow.com/questions/28272923/default-xmxsize-in-java-8-max-heap-size
https://stackoverflow.com/questions/28272923/default-xmxsize-in-java-8-max-heap-size

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

method area. In other words, the permanent generation and the metaspace are two
implementations of the method area in the HotSpot VM specification. Furthermore, the
permanent generation was the implementation of the method area before JDK 1.8, while
the method area was implemented in the metaspace in JDK 1.8 and later.

BB
(SR Z/AE)

|
l l

KAK TTEE (]
(BixsEi) (Bix32i])

Why should we replace PermGen with MetaSpace?

The following figure is from "In-depth understanding of Java Virtual Machine" 3rd edition
2.2.5

KEALHLES, BRI X7k X S 22 S T T B . 8 B HotSpot KR AU K%, 7EIDK 611
B} 16 Hot Spot JF R FIBA B A T FF Ak A4S, BB B R A A A (Native Memory) SR8 X HILT
,EI]T[” E|TIDK 7ffJHotSpot, CEIEEAMAEKARM AR E R, HETREBH, WET
TDK 8, ETRakdt T A S, L GIRockt. 19 FEAEN T LIm T (Meta-
space) FICE, JEIDK 79 A ATOERRRIRE (EERFHEE) ZWBICEAT.

1. The entire permanent generation has a fixed size limit set by the JVM itself and cannot
be adjusted (that is, it is limited by the JVM memory). The metaspace uses local memory
and is limited by the available memory of the local machine. Although the metaspace may
still overflow, the probability of overflow is smaller than before.

When the metaspace overflows, you will get the following
error: java. lang.OutOfMemoryError: MetaSpace

You can -XX: MaxMetaspaceSize set the maximum Metaspace size using the flag. The
default value is unlimited, which means it is only limited by the system memory. -XX:
MetaspaceSize The resize flag defines the initial size of the Metaspace. If this flag is not
specified, the Metaspace will be dynamically resized based on the application deman(’.
runtime.

https://javaguide.cn/java/jvm/memory-area.html 14/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

2. The metaspace stores the metadata of the class. In this way, the amount of metadata
loaded is not MaxPermSize controlled by the system, but by the actual available space of
the system, so that more classes can be loaded.

3. In JDKS8, when the HotSpot and JRockit codes were merged, JRockit never had a
permanent generation. After the merger, there was no need to set up such a permanent
generation.

4. The permanent generation brings unnecessary complexity to GC and the recovery
efficiency is low.

What are the commonly used parameters in the method area?

Before JDK 1.8, when the permanent generation had not yet been completely removed, the
following parameters were usually used to adjust the method area size.

1 -XX:PermSize=N //FHEX (KAL) AR java
5 -XX:MaxPermSize=N //AFEX (KAR) mAKRN, BEXMEESE

OutOfMemoryError J%:java.lang.0utOfMemoryError: PermGen

Relatively speaking, garbage collection rarely occurs in this area, but it does not mean that
the data will "exist forever" after entering the method area.

In JDK 1.8, the method area (HotSpot's permanent generation) was completely removed
(this was already the case in JDK 1.7), and replaced by the Metaspace, which uses local
memory. The following are some common parameters:

-XX:MetaspaceSize=N //i&& Metaspace MI#ta (Fl&/I\A/N) java
-XX:MaxMetaspaceSize=N //i%X& Metaspace HImAK/

A big difference from the permanent generation is that if you do not specify a size, the
virtual machine will use up all available system memory as more classes are created.

Runtime constant pool

In addition to the description information of the class version, fields,
methods, interfaces, etc., the Class file also contains a constant pool table
(Constant Pool Table) for storing various literals and symbolic references generated
during compilation . .

https://javaguide.cn/java/jvm/memory-area.html 15/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

A literal is a fixed value representation in source code; its meaning is clearly defined.
Literals include integers, floating-point numbers, and string literals. Common symbol
references include class symbol references, field symbol references, method symbol
references, and interface method symbol references.

Section 7.34 of the third edition of "In-depth Understanding of the Java Virtual Machine"
explains symbolic references and direct references as follows:

734 itk

AT BT BUAE JavalE SEUBHLAERE Bikit P9 (R 5 55 5 T B SR BLERS| AL #8, 9995 91 FIAE 56 3 VF Class
AR AN ECE W E R, fEClss 3L E ELCONSTANT Class_info.
CONSTANT _Fieldref info. CONSTANT M ethodref info 388U i) 7 Bt H B, ABMEHT B BE b BT 8 19 B

FF 551 (Symbolic References) : %5 5| F BA— 4L FF 5 R H0 R By 5| F o4 B A%, 755 0T BURAT {1
et SRS A G e G BRI . 550 A SRR AT R, 3l
R A -2 E S B Ui F Sl %, SRRyl al el 7405 ol L& R HE,
ERENREZNAS I HSSHE 2N, FAFSIIHNFmRERHE LE Javalf 410
i) MClassCFRE b .

"EEGI M (Direct References) : FLHET| FIAL W AECEESE] HBRidREE. AHXHwES fRak a2t — 1k
[s i) H bR POEES| TR AL SCIRAY P 1740 IR BLEEMISERY, [R)— 95 5 5| R ZEA (R
FLHLS 0 8 ok B RS A — R R R T EEESI AL 5| Ae B ird 2 S 47 B
I AP AFTE .

The constant pool table will be stored in the runtime constant pool of the method area after
the class is loaded.

The runtime constant pool functions similarly to the symbol table of a traditional
programming language, although it contains a wider range of data than a typical symbol
table.

Since the runtime constant pool is part of the method area, it is naturally limited by the
method area memory. When the constant pool can no longer apply for memory,
OutOfMemoryError an error will be thrown.

String constant pool

The string constant pool is an area specially opened up by the JVM for strings (String
class) in order to improve performance and reduce memory consumption. The main
purpose is to avoid repeated creation of strings. ‘

https://javaguide.cn/java/jvm/memory-area.html 16/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

/! EFREEENPEEFRFENR "ab” java
// BERFBEIR "ab" W5|BEELSLS aa
String aa = "ab";

// BREREFHEESEMRFRFENR "ab”, MWELS|IA bb
String bb = "ab";
System.out.println(aa==bb); // true

Ul W N

The implementation of the string constant pool in the HotSpot virtual machine
src/hotspot/share/classfile/stringTable.cpp can StringTable be simply
understood as a fixed-size constant pool HashTable with a capacity
StringTableSize (which can -XX:StringTableSize be set through a parameter). It
stores the mapping relationship between strings (keys) and references to string objects
(values). The references to string objects point to string objects in the heap.

Before JDK 1.7, the string constant pool was stored in the permanent generation. In JDK
1.7, the string constant pool and static variables were moved from the permanent
generation to the Java heap.

KHER
FRIEE 5 {TRY Bt |
iR i
ITHRIBER BSTE FHEEET |

https://javaguide.cn/java/jvm/memory-area.html 17/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

JDK1.7
{ HEX (PermGen) : HE
5 REMER BTN EE E BIZE
§ FERES |
| E PSRBT
i JIT '
| - 1R ER

Why did JDK 1.7 move the string constant pool to the heap?

This is primarily due to the low GC efficiency of the permanent generation (implemented
in the method area). GC is only performed during a full heap collection (Full GC). Java
programs often have a large number of strings waiting to be collected. Placing the string
constant pool in the heap allows for more efficient and timely reclaiming of string memory.

Related question: Does the JVM constant pool store objects or references? - RednaxelaFX -
Zhihu

Finally, let me share what Professor Zhou Zhiming said in issue #112 of the sample code
& errata GitHub repository in "In-depth Understanding of the Java Virtual Machine (3rd
Edition)" :

The runtime constant pool, method area, and string constant pool are
logical concepts that do not change with the virtual machine
implementation and are public and abstract. Metaspace and Heap are
physical concepts related to a specific virtual machine implementation and
are private and specific.

Direct Memory

Direct memory is a special memory buffer that is not allocated in the Java heap or me
area, but is allocated on the native memory through JNI.

https://javaguide.cn/java/jvm/memory-area.html 18/25

https://www.zhihu.com/question/57109429/answer/151717241
https://www.zhihu.com/question/57109429/answer/151717241
https://www.zhihu.com/question/57109429/answer/151717241
https://github.com/fenixsoft/jvm_book/issues/112
https://github.com/fenixsoft/jvm_book/issues/112
https://github.com/fenixsoft/jvm_book
https://github.com/fenixsoft/jvm_book
https://github.com/fenixsoft/jvm_book
https://github.com/fenixsoft/jvm_book/issues/112
https://github.com/fenixsoft/jvm_book/issues/112

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

Direct memory is not part of the virtual machine's runtime data area, nor is it a memory
area defined in the virtual machine specification. However, this part of memory is
frequently used and may cause OutOfMemoryError errors.

NIO (Non-Blocking I/0, also known as New I/0) , newly added in JDK 1.4,
introduces an I/O method based on channels and buffers . It can directly allocate
off-heap memory using the native library and then reference this memory
using a DirectByteBuffer object stored in the Java heap. This can significantly
improve performance in some scenarios by avoiding data copying back and
forth between the Java heap and the native heap .

Direct memory allocation is not limited by the Java heap, but since it is memory, it is
limited by the total memory size of the machine and the processor addressing space.

A similar concept is off-heap memory . Some articles equate direct memory with off-
heap memory, but I personally think this is not entirely accurate.

Off-heap memory is memory that allocates memory objects outside the heap. This memory
is directly managed by the operating system (rather than the virtual machine). As a result,
the impact of garbage collection on the application can be reduced to a certain extent.

Exploring HotSpot Virtual Machine Objects

The above introduction gives us a general understanding of the memory situation of the
virtual machine. Now let's take a detailed look at the entire process of object allocation,
layout, and access in the Java heap of the HotSpot virtual machine.

Object creation

I suggest that you should be able to write out the Java object creation process and
understand what each step is doing.

Step 1: Class loading check

When the virtual machine encounters a new instruction, it first checks whether the
instruction's argument can locate a symbolic reference to the class in the constant pool,
and then checks whether the class represented by the symbolic reference has been lo: .
parsed, and initialized. If not, the corresponding class loading process must be perfori. ..
first.

https://javaguide.cn/java/jvm/memory-area.html 19/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

Step 2: Allocate memory

After the class loading check passes, the virtual machine allocates memory for
the newly created object . The memory size required for the object is determined after class
loading is complete. Allocating space for the object is equivalent to allocating a block of
memory of a specific size from the Java heap. There are two allocation methods :
"pointer bump'" and "free list." The choice of allocation method is determined
by the regularity of the Java heap, which in turn is determined by whether the
garbage collector used has compaction capabilities .

Two ways of memory allocation (supplementary content, need to be mastered):

e Pointer collision:

o Applicable occasions: when the heap memory is regular (that is, there is no memory
fragmentation).

o Principle: All used memory is integrated into one side, and unused memory is placed
on the other side. There is a demarcation pointer in the middle. You only need to
move the pointer toward the unused memory by the object memory size.

o GC collector using this allocation method: Serial, ParNew

e Free List:

o Applicable occasions: when the heap memory is irregular.

o Principle: The virtual machine maintains a list that records which memory blocks are
available. When allocating, it finds a large enough memory block to allocate to the
object instance and finally updates the list record.

o GC collector using this allocation method: CMS

The choice of either of these two methods depends on whether the Java heap memory is
well-organized. This, in turn, depends on whether the GC collector uses a "mark-and-
sweep" or "mark-and-compact"” (also known as "mark-and-compact") algorithm. It's worth
noting that the copying algorithm also produces well-organized memory.

Memory allocation concurrency issues (supplementary content, need to be
mastered)

When creating objects, there is a very important issue, which is thread safety. Because in
the actual development process, creating objects is very frequent. As a virtual machine i+ i<
necessary to ensure that threads are safe. Generally speaking, virtual machines use tv
methods to ensure thread safety:

https://javaguide.cn/java/jvm/memory-area.html 20/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

e CAS + Failure Retry: CAS is an implementation of optimistic locking. Optimistic
locking assumes no conflicts and completes an operation without locking. If a conflict
fails, the operation is retried until it succeeds. Virtual machines use CAS with
failure retry to ensure the atomicity of update operations.

e TLAB: Allocate a block of memory in the Eden area for each thread in advance. When
the JVM allocates memory to objects in the thread, it first allocates it in TLAB. When
the object is larger than the remaining memory in TLAB or the memory in TLAB is
exhausted, the above-mentioned CAS is used for memory allocation.

Step 3: Initialize zero value

After the memory allocation is completed, the virtual machine needs to initialize the
allocated memory space to zero values (excluding the object header). This step ensures that
the instance fields of the object can be used directly in the Java code without assigning
initial values, and the program can access the zero values corresponding to the data types
of these fields.

Step 4: Set the object header

After initializing to zero values, the VM performs necessary configuration on the
object, including information such as which class the object is an instance of, how to find
the class metadata, the object's hash code, and the object's GC generation age. This
information is stored in the object header. Furthermore, the object header
configuration varies depending on the VM's current state, such as whether biased locking
is enabled.

Step 5: Execute the init method

After all of the above steps are completed, from the virtual machine's perspective, a new
object has been created. However, from the Java program's perspective, object creation has
just begun; <init> methods haven't yet been executed, and all fields are still zero.
Therefore, generally speaking, executing the new instruction is followed by executing

<init> methods, initializing the object according to the programmer's wishes. Only then
is a truly usable object considered fully created.

Memory layout of the object G

In the Hotspot virtual machine, the layout of objects in memory can be divided into three
areas: object header , instance data , and padding .

https://javaguide.cn/java/jvm/memory-area.html 21/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

The object header includes two parts of information:

1. Mark Word: used to store the runtime data of the object itself, such as hash code, GC
generation age, lock status flag, lock held by thread, biased thread ID, biased timestamp,
etc.

2. Type pointer (Klass pointer): The object points to its class metadata. The virtual
machine uses this pointer to determine which class the object is an instance of.

The instance data part is the valid information actually stored in the object,
and is also the content of various types of fields defined in the program.

Alignment padding is not mandatory and has no special meaning; it simply
serves as a placeholder. The Hotspot VM's automatic memory management system
requires that the starting address of an object be an integer multiple of 8 bytes. In other
words, the object size must be an integer multiple of 8 bytes. Object headers are multiples
of 8 bytes (1 or 2). Therefore, when the object instance data is misaligned, alignment
padding is required.

Object access location

The purpose of creating objects is to use them. Java programs use reference data on the
stack to manipulate specific objects on the heap. Object access methods are determined by
the virtual machine implementation. Currently, the mainstream access methods include
using handles and direct pointers .

Handle

If a handle is used, a block of memory will be allocated in the Java heap as a handle pool.
The reference stores the handle address of the object, and the handle contains the specific
address information of the object instance data and the object type data.

https://javaguide.cn/java/jvm/memory-area.html 22/25

9/22/25,10:34 PM

BEEER

int

short

double

float

char

reference

Direct pointers

Java Memory Areas Explained (Key Points) | JavaGuide

1

At et

BNBSHRIERET ——__ sigxmme 9sEe)
51 KBRS

A X

MELBEIE (XER)

If direct pointer access is used, the address of the object is stored directly in the reference.

BEEER

int

short

double

float

char

reference

https://javaguide.cn/java/jvm/memory-area.html

MEREFIHIE IRER)

BB R BB RAIIS T

HiEX

sgxmmE (xaa) @D

23/25

9/22/25,10:34 PM Java Memory Areas Explained (Key Points) | JavaGuide

Both object access methods have their own advantages. The biggest advantage of using
handles is that the reference stores a stable handle address. When the object is moved, only
the instance data pointer in the handle changes; the reference itself remains unchanged.
The biggest advantage of using direct pointer access is speed, as it saves the time overhead
of a pointer positioning.

The HotSpot virtual machine mainly uses this method to access objects.

refer to

¢ Deep Understanding of Java Virtual Machine: JVM Advanced Features and Best
Practices (Second Edition)

e Write Your Own Java Virtual Machine

e Chapter 2. The Structure of the Java Virtual Machine:
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html

e JVM stack frame internal structure - dynamic link: https://chenxitag.com/archives/368

e When does the "literal" in new String("literal") in Java enter the string constant pool? -
Answer by Mu Girl - Zhihu:

https://www.zhihu.com/question/55994121/answer/147296098
e Does the JVM constant pool store objects or references? - Answer by RednaxelaFX -

Zhihu: https://www.zhihu.com/question/57109429/answer/151717241

 http://www.pointsoftware.ch/en/under-the-hood-runtime-data-areas-javas-memory-

model/

e https://dzone.com/articles/jvm-permgen-—-where-art-thou

» https://stackoverflow.com/questions/9095748 /method-area-and-permgen

https://javaguide.cn/java/jvm/memory-area.html

24/25

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html
https://chenxitag.com/archives/368
https://chenxitag.com/archives/368
https://chenxitag.com/archives/368
https://www.zhihu.com/question/55994121/answer/147296098
https://www.zhihu.com/question/55994121/answer/147296098
https://www.zhihu.com/question/57109429/answer/151717241
https://www.zhihu.com/question/57109429/answer/151717241
http://www.pointsoftware.ch/en/under-the-hood-runtime-data-areas-javas-memory-model/
http://www.pointsoftware.ch/en/under-the-hood-runtime-data-areas-javas-memory-model/
http://www.pointsoftware.ch/en/under-the-hood-runtime-data-areas-javas-memory-model/
https://dzone.com/articles/jvm-permgen-%E2%80%93-where-art-thou
https://dzone.com/articles/jvm-permgen-%E2%80%93-where-art-thou
https://stackoverflow.com/questions/9095748/method-area-and-permgen
https://stackoverflow.com/questions/9095748/method-area-and-permgen

9/22/25,10:34 PM

Java Memory Areas Explained (Key Points) | JavaGuide

JavaGuideE A LRSS

https://javaguide.cn/java/jvm/memory-area.html

(M{E¥EEJavaGuide)

1. 2RBEREE “PDF”RIER LIPDFE R F 1

2, ARSEEEE “RIRE" KW JavaP I BE R ITHIR
3. AREEEEE“HAER" RDARJavaF FMESE
4, AREREESE“/\RI” K Javalid RE+EE

Recently Updated2025/8/6 18:37

Contributors: Snailclimb , Jin Yang , Charles Wu , SnailClimb , JKSAGE , bestgrc , yellowgg , CoderZZ
yidasangian , LicoCode , Jim Han , Kou Shuang , Shuang Kou , liwenguang , Rocky , shuang.kou , jiayao

, yef , guide , hailong.sha , Ma Zhaoming , TommyMerlin , kaka2634 , 13350063660 , Sheldon7777,
ZhoucpSAMA , huzhuoyu , Gale , sam , geomonlin , Dayu , Guide , Mr.Hope , paigeman , seven17777777
, gyaatrox , gksuki , wunameya , Kisa-Dong , CoteNite , uncle-lv

Copyright © 2025 Guide

25/25

