
This article mainly aims to deepen your understanding of Spring through some questions,
so it will not involve too much code!

Many of the following questions were overlooked by me while using Spring, and I only
addressed them by consulting numerous resources and books. There are also numerous
articles online that summarize frequently asked Spring questions and interviews, but I feel
like most of them are copied from one another, and many of the questions aren't very good,
and some of the answers are flawed. So, I've spent a week of my spare time compiling these
questions, hoping they'll be helpful.

Spring is an open source lightweight Java development framework designed to improve
developer efficiency and system maintainability.

When we say Spring framework, we generally mean Spring Framework, which is a
collection of modules that can easily assist us in development. For example, Spring
supports IoC (Inversion of Control) and AOP (Aspect-Oriented Programming), can easily
access databases, can easily integrate third-party components (email, tasks, scheduling,
caching, etc.), has good support for unit testing, and supports the development of RESTful
Java applications.

Interview special edition : Friends who are preparing for Java interviews can consider
the interview special edition: "Java Interview Guide" (very high quality, specially
designed for interviews, best used with JavaGuide).
Knowledge Planet : Technical Column/One-on-one Questions/Resume
Modification/Job Hunting Guide/Interview Check-in/Irregular Benefits, welcome to join
the JavaGuide official Knowledge Planet .

This is a small advertisement that may be useful to you

Spring Basics

What is Spring Framework?

Summary of common Spring
interview questions

Guide frame About 13,470 words About 45 minutesSpring

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 1/51

https://javaguide.cn/zhuanlan/java-mian-shi-zhi-bei.html
https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/article/

The core idea of ​​Spring is not to reinvent the wheel, to use it out of the box and improve
development efficiency.

Spring translates to "spring," and its goal and mission is to bring spring to Java
programmers! So touching!

🤐 One more thing to mention: The popularity of a language usually requires a
killer application, and Spring is a killer application framework for the Java
ecosystem.

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 2/51

The core functions provided by Spring are mainly IoC and AOP. When learning Spring, you
must understand the core ideas of IoC and AOP!

Spring official website: https://spring.io/
GitHub address: https://github.com/spring-projects/spring-framework

Spring 4.x version :

Spring 5.x version :

What modules does Spring include?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 3/51

https://spring.io/
https://spring.io/
https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework

The Portlet component of the Web module in Spring 5.x has been deprecated, and the
WebFlux component for asynchronous responsive processing has been added.

The dependencies of Spring modules are as follows:

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 4/51

The core module of the Spring framework, or the foundational module, primarily provides
support for IoC dependency injection. All other Spring features rely on this module, as can
be seen in the dependency diagram of the various Spring modules above.

spring-core : The basic core tool class of the Spring framework.
spring-beans : Provides support for bean creation, configuration, and management.
spring-context : Provides support for internationalization, event propagation,
resource loading and other functions.
spring-expression : Provides support for Spring Expression Language (SpEL). It
depends only on the core module and does not depend on other modules. It can be used
alone.

spring-aspects : This module provides support for integration with AspectJ.

Core Container

AOP

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 5/51

spring-aop : provides aspect-oriented programming implementation.
spring-instrument : Provides the ability to add an agent to the JVM. Specifically, it
provides a weaving agent for Tomcat, which delivers class files to Tomcat as if they were
loaded by a class loader. Don't worry if you don't understand it; this module has very
limited use cases.

spring-jdbc : Provides an abstract JDBC framework for database access. Different
databases have their own APIs for operating them, and Java programs only need to
interact with the JDBC API, thus shielding them from the database's influence.
spring-tx : Provides support for transactions.
spring-orm : Provides support for ORM frameworks such as Hibernate, JPA, and
iBatis.
spring-oxm : Provides an abstraction layer to support OXM (Object-to-XML-
Mapping), such as JAXB, Castor, XMLBeans, JiBX and XStream.
spring-jms : Message service. Since Spring Framework 4.1, it also provides inheritance
of the spring-messaging module.

spring-web : Provides some basic support for the implementation of Web functions.
spring-webmvc : Provides implementation of Spring MVC.
spring-websocket : Provides support for WebSocket, which enables two-way
communication between the client and the server.
spring-webflux : Provides support for WebFlux, a new reactive framework introduced
in Spring Framework 5.0. Unlike Spring MVC, it does not require the Servlet API and is
fully asynchronous.

spring-messaging is a new module added since Spring 4.0. Its main responsibility is to
integrate some basic message transmission applications into the Spring framework.

The Spring team advocates test-driven development (TDD). With the help of Inversion of
Control (IoC), unit testing and integration testing become easier.

Data Access/Integration

Spring Web

Messaging

Spring Test

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 6/51

Spring's test module has good support for commonly used test frameworks such as JUnit
(unit testing framework), TestNG (similar to JUnit), Mockito (mainly used for mock
objects), PowerMock (solves problems with Mockito such as the inability to simulate final,
static, and private methods).

Many people can't tell the difference between Spring, Spring MVC, and Spring Boot! Here's
a brief introduction to them. It's actually very simple and there's nothing too advanced
about them.

Spring includes multiple functional modules (mentioned above), the most important of
which is the Spring-Core module (which mainly provides support for IoC dependency
injection functions). The functional implementation of other modules in Spring (such as
Spring MVC) basically depends on this module.

The following figure corresponds to Spring 4.x. In the latest 5.x version, the Portlet
component of the Web module has been deprecated, and the WebFlux component for
asynchronous responsive processing has been added.

What is the relationship between Spring, Spring MVC,
and Spring Boot?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 7/51

Spring MVC is a crucial Spring module that enables you to quickly build web applications
using the MVC architecture. MVC stands for Model, View, and Controller, and its core
concept is to organize code by separating business logic, data, and display.

Developing with Spring was cumbersome due to various configuration issues. For example,
enabling certain Spring features required explicit configuration using XML or Java. Thus,
Spring Boot was born!

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 8/51

Spring aims to simplify J2EE enterprise application development. Spring Boot aims to
simplify Spring development (less configuration files, works out of the box!).

Spring Boot only simplifies the configuration. If you need to build a web application with
MVC architecture, you still need to use Spring MVC as the MVC framework. It’s just that
Spring Boot simplifies many configurations of Spring MVC for you, making it truly out-of-
the-box!

IoC (Inversion of Control) is a design concept, not a specific technical implementation.
The idea behind IoC is to transfer control over object creation, which would normally be
manually created in a program, to the Spring framework. However, IoC isn't unique to
Spring and is also used in other languages.

Why is it called Inversion of Control?

Control : refers to the power to create (instantiate, manage) objects
Inversion : Control is handed over to the external environment (Spring framework,
IoC container)

The interdependencies between objects are managed by the IoC container, which then
injects the objects. This greatly simplifies application development and frees applications
from complex dependencies. The IoC container acts like a factory; when we need to create
an object, we simply configure the configuration file/annotation without having to worry
about how the object is created.

Spring IoC

Talk about your understanding of Spring IoC

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 9/51

In a real-world project, a Service class might depend on many other classes. If you need to
instantiate this service, you might have to figure out the constructors of all its underlying
classes each time, which can be frustrating. With IoC, you only need to configure it and
reference it where needed, greatly improving project maintainability and reducing
development effort.

In Spring, the IoC container is the carrier used by Spring to implement IoC. The IoC
container is actually a Map (key, value) that stores various objects.

In the Spring era, we generally configured Beans through XML files. Later, developers felt
that XML files were not a good way to configure, so SpringBoot annotation configuration
gradually became popular.

Related reading:

IoC source code reading
IoC & AOP Explained (Quickly Understand)

Simply put, Bean refers to objects managed by the IoC container.

We need to tell the IoC container which objects to help us manage, which is defined
through configuration metadata. Configuration metadata can be XML files, annotations or
Java configuration classes.

The following diagram simply shows how the IoC container uses configuration metadata to
manage objects.

What are Spring Beans?

<!-- Constructor-arg with 'value' attribute -->
<bean id="..." class="...">
 <constructor-arg value="..."/>
</bean>

xml
1
2
3
4

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 10/51

https://javadoop.com/post/spring-ioc
https://javadoop.com/post/spring-ioc
https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html

org.springframework.beans These org.springframework.context two packages are
the basis of IoC implementation. If you want to study the source code related to IoC, you
can check it out.

@Component : A general annotation that can mark any class as Spring a component. If
you don't know which layer a bean belongs to, you can use @Component annotations.
@Repository : Corresponding to the persistence layer, namely the Dao layer, it is

mainly used for database-related operations.
@Service : Corresponding to the service layer, it mainly involves some complex logic

and requires the use of the Dao layer.
@Controller : Corresponding to the Spring MVC control layer, it is mainly used to

accept user requests and call Service the layer to return data to the front-end page.

@Component Annotations act on classes, while @Bean annotations act on methods.
@Component Typically, a bean is automatically detected and automatically wired into

the Spring container through classpath scanning (we can use
@ComponentScan annotations to define the path to scan, identify the classes to be

wired, and then automatically wire them into the Spring bean container).
@Bean Annotations are typically used to define the bean generated in a method marked

with the annotation, @Bean telling Spring that this is an instance of a certain class and
to return it to me when I need it.

What are the annotations for declaring a class as a Bean?

What is the difference between @Component and @Bean?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 11/51

@Bean Annotations @Component are more customizable than annotations, and in many
places we can only @Bean register beans through annotations. For example, when we
reference classes in third-party libraries and need to assemble them into Spring the
container, we can only @Bean do so through annotations.

@Bean Annotation usage examples:

The above code is equivalent to the following xml configuration

The following example is @Component not possible with .

Spring's built-in @Autowired and JDK's built-in @Resource and @Inject can be used to
inject beans.

What are the annotations for injecting beans?

@Configuration
public class AppConfig {
 @Bean
 public TransferService transferService() {
 return new TransferServiceImpl();
 }

}

<beans>
 <bean id="transferService"
class="com.acme.TransferServiceImpl"/>
</beans>

@Bean
public OneService getService(status) {
 case (status) {
 when 1:
 return new serviceImpl1();
 when 2:
 return new serviceImpl2();
 when 3:
 return new serviceImpl3();
 }
}

java
1
2
3
4
5
6
7
8

xml
1
2
3

java
1
2
3
4
5
6
7
8
9
10
11

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 12/51

Annotation Package Source

@Autowired org.springframework.bean.factory Spring 2.5+

@Resource javax.annotation Java JSR-250

@Inject javax.inject Java JSR-330

@Autowired And @Resource the ones used more.

Autowired It is a built-in annotation of Spring. The default injection method is
byType (matching by type), which means that the interface type will be matched and

injected into the Bean (implementation class of the interface) first.

What's the problem with this? When an interface has multiple implementation
classes, byType this method cannot correctly inject objects, because at this time Spring
will find multiple options that meet the conditions at the same time, and by default it
doesn't know which one to choose.

In this case, the injection method will become byName (matching by name), which is
usually the class name (with the first letter lowercase). For example, in the code below
smsService , this is the name I am talking about, which should be easier to understand.

For example, SmsService the interface has two implementation classes:
SmsServiceImpl1 and SmsServiceImpl2 , and both are managed by the Spring

container.

What is the difference between @Autowired and
@Resource?

// smsService
@Autowired
private SmsService smsService;

// byName byType bean
@Autowired
private SmsService smsService;
// SmsServiceImpl1 bean
@Autowired
private SmsService smsServiceImpl1;

java
1
2
3

java
1
2
3
4
5
6
7

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 13/51

We still recommend @Qualifier specifying the name explicitly through annotations
rather than relying on the variable name.

@Resource It is an annotation provided by JDK. The default injection method is byName .
If the corresponding bean cannot be matched by name, the injection method will become
byType .

@Resource There are two important properties that are commonly used in daily
development: name (name) and type (type).

If you specify only name the attribute, the injection method is byName . If you specify only
type the attribute, the injection method is byType . If you specify both the name and
type attributes (not recommended), the injection method is byType + byName .

To summarize briefly:

@Autowired It is an annotation provided by Spring and @Resource an annotation
provided by JDK.
Autowired The default injection method is byType (matching by type) and
@Resource the default injection method is byName (matching by name).

// SmsServiceImpl1 bean
// smsServiceImpl1
@Autowired
@Qualifier(value = "smsServiceImpl1")
private SmsService smsService;

public @interface Resource {
 String name() default "";
 Class<?> type() default Object.class;
}

// byName byType bean
@Resource
private SmsService smsService;
// SmsServiceImpl1 bean
@Resource
private SmsService smsServiceImpl1;
// SmsServiceImpl1 bean
@Resource(name = "smsServiceImpl1")
private SmsService smsService;

8
9
10
11

java
1
2
3
4

java
1
2
3
4
5
6
7
8
9

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 14/51

When an interface has multiple implementation classes, @Autowired both
@Resource must be named to correctly match the corresponding bean. Autowired You

can explicitly specify the name through @Qualifier annotations or
@Resource through name attributes.
@Autowired Supports use on constructors, methods, fields, and parameters.
@Resource Mainly used for injection on fields and methods, not supported on

constructors or parameters.

Common ways of dependency injection (DI):

1. Constructor injection: Inject dependencies through the class constructor.
2. Setter injection: Inject dependencies through the Setter method of a class.
3. Field injection: Use annotations (such as @Autowired or @Resource) directly on the

fields of a class to inject dependencies.

Constructor injection example:

Setter injection example:

What are the ways to inject beans?

@Service
public class UserService {

 private final UserRepository userRepository;

 public UserService(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 //...
}

@Service
public class UserService {

 private UserRepository userRepository;

 // Spring 4.3 @Autowired
 @Autowired
 public void setUserRepository(UserRepository userRepository) {

java
1
2
3
4
5
6
7
8
9
10
11

java
1
2
3
4
5
6
7
8

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 15/51

Field injection example:

Spring officially has an answer to this question: https://docs.spring.io/spring-
framework/reference/core/beans/dependencies/factory-collaborators.html#beans-setter-
injection .

Here I mainly extract, summarize and improve Spring's official suggestions.

Spring officially recommends constructor injection , which has the following
advantages:

1. Dependency integrity: Ensures that all required dependencies are injected when the
object is created, avoiding the risk of null pointer exceptions.

2. Immutability: helps create immutable objects and improves thread safety.
3. Initialization guarantee: Components are fully initialized before use, reducing potential

errors.
4. Testing convenience: In unit tests, you can pass in mock dependencies directly through

the constructor without having to rely on Spring container injection.

Constructor injection is suitable for handling required dependencies , while Setter
injection is more suitable for optional dependencies that can have default values ​​or be
set dynamically during the object lifecycle. Although @Autowired Setter methods can be
used to handle required dependencies, constructor injection is still a better choice.

Constructor injection or Setter injection?

 this.userRepository = userRepository;
 }

 //...
}

@Service
public class UserService {

 @Autowired
 private UserRepository userRepository;

 //...
}

9
10
11
12
13

java
1
2
3
4
5
6
7
8

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 16/51

https://docs.spring.io/spring-framework/reference/core/beans/dependencies/factory-collaborators.html#beans-setter-injection
https://docs.spring.io/spring-framework/reference/core/beans/dependencies/factory-collaborators.html#beans-setter-injection
https://docs.spring.io/spring-framework/reference/core/beans/dependencies/factory-collaborators.html#beans-setter-injection
https://docs.spring.io/spring-framework/reference/core/beans/dependencies/factory-collaborators.html#beans-setter-injection

In some cases (such as third-party classes that do not provide Setter methods), constructor
injection may be the only option .

The scopes of beans in Spring are usually as follows:

singleton : There is only one bean instance in the IoC container. Beans in Spring are
singletons by default, which is an application of the singleton design pattern.
prototype : A new bean instance is created each time it is retrieved. That is,
getBean() two consecutive Bean instances are obtained.

request (only available for Web applications): Each HTTP request will generate a new
bean (request bean), which is only valid within the current HTTP request.
session (only available for Web applications): Each HTTP request from a new session
will generate a new bean (session bean), which is only valid within the current HTTP
session.
application/global-session (available only for Web applications): Each Web
application creates a bean (application bean) when it starts. The bean is valid only
during the startup time of the current application.
websocket (only available for Web applications): A new bean is created for each
WebSocket session.

How to configure the scope of the bean?

XML method:

Annotation method:

Whether a bean in the Spring framework is thread-safe depends on its scope and state.

What are the scopes of beans?

Are beans thread-safe?

<bean id="..." class="..." scope="singleton"></bean>

@Bean
@Scope(value = ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public Person personPrototype() {
 return new Person();
}

xml
1

java
1
2
3
4
5

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 17/51

Here we will use the two most commonly used scopes, prototype and singleton, as
examples. Almost all scenarios use the default singleton scope, so we will focus on the
singleton scope.

In prototype scope, a new bean instance is created for each access, eliminating resource
contention and thread safety issues. In singleton scope, there is only one bean instance in
the IoC container, which may lead to resource contention (depending on whether the bean
is stateful). If the bean is stateful, thread safety issues may arise (stateful beans are objects
with mutable member variables).

Stateful Bean Example:

However, most beans are actually stateless (no mutable member variables are defined)
(such as Dao, Service). In this case, beans are thread-safe.

Stateless Bean Example:

There are three common solutions to the thread safety problem of stateful singleton beans:

// List
@Component
public class ShoppingCart {
 private List<String> items = new ArrayList<>();

 public void addItem(String item) {
 items.add(item);
 }

 public List<String> getItems() {
 return items;
 }
}

//
@Component
public class UserService {

 public User findUserById(Long id) {
 //...
 }
 //...
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13

java
1
2
3
4
5
6
7
8
9

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 18/51

1. Avoid mutable member variables : Try to design beans to be stateless.
2. Usage ThreadLocal : Store mutable member variables in ThreadLocal to ensure

thread independence.
3. Use synchronization mechanism : Use synchronized or ReentrantLock for

synchronization control to ensure thread safety.

Here we take as ThreadLocal an example to demonstrate ThreadLocal the scenario of
saving user login information:

1. Create an instance of the Bean : The Bean container first finds the Bean definition
in the configuration file, and then uses the Java reflection API to create an instance of
the Bean.

2. Bean property assignment/filling : Set relevant properties and dependencies for
the bean, such as @Autowired objects injected by annotations, @Value injected values,
setter method or constructor injection dependencies and values, and
@Resource various injected resources.

3. Bean initialization :
If the Bean implements BeanNameAware the interface, call setBeanName() the
method and pass in the name of the Bean.

Do you know the life cycle of Bean?

public class UserThreadLocal {

 private UserThreadLocal() {}

 private static final ThreadLocal<SysUser> LOCAL =
ThreadLocal.withInitial(() -> null);

 public static void put(SysUser sysUser) {
 LOCAL.set(sysUser);
 }

 public static SysUser get() {
 return LOCAL.get();
 }

 public static void remove() {
 LOCAL.remove();
 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 19/51

If the Bean implements BeanClassLoaderAware the interface, call
setBeanClassLoader() the method and pass in ClassLoader the instance of the

object.
If the Bean implements BeanFactoryAware the interface, call
setBeanFactory() the method and pass in BeanFactory the instance of the object.

Similar to the above, if other *.Aware interfaces are implemented, the
corresponding methods are called.
If there is an object related to the Spring container that loaded this Bean
BeanPostProcessor , execute postProcessBeforeInitialization() the method

If the Bean implements InitializingBean the interface, execute
afterPropertiesSet() the method.

If the bean definition in the configuration file contains init-method the attribute,
the specified method is executed.
If there is a object associated with the Spring container that loaded this Bean
BeanPostProcessor , execute postProcessAfterInitialization() the method.

4. Destroy Bean : Destruction does not mean to destroy the Bean immediately, but to
record the Bean's destruction method first. When the Bean or container needs to be
destroyed in the future, these methods will be called to release the resources held by the
Bean.

If the Bean implements DisposableBean the interface, execute destroy() the
method.
If the bean definition in the configuration file contains destroy-method the
attribute, execute the specified bean destruction method. Alternatively, you can
directly use @PreDestroy annotations to mark the method to be executed before the
bean is destroyed.

AbstractAutowireCapableBeanFactory In the method , doCreateBean() we can see
that these four stages are executed in sequence:

protected Object doCreateBean(final String beanName, final
RootBeanDefinition mbd, final @Nullable Object[] args)
 throws BeanCreationException {

 // 1. Bean
 BeanWrapper instanceWrapper = null;
 if (instanceWrapper == null) {
 instanceWrapper = createBeanInstance(beanName, mbd, args);
 }

 Object exposedObject = bean;
 try {

java
1
2
3
4
5
6
7
8
9
10
11
12

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 20/51

Aware The interface allows Bean to get Spring container resources.

The interfaces provided in Spring Aware are:

1. BeanNameAware : Inject the current bean corresponding to beanName;
2. BeanClassLoaderAware : Inject the ClassLoader that loads the current bean;
3. BeanFactoryAware : Injects BeanFactory a reference to the current container.

BeanPostProcessor Interface is a powerful extension point provided by Spring for
modifying Bean.

 // 2. Bean /
 populateBean(beanName, mbd, instanceWrapper);
 // 3. Bean
 exposedObject = initializeBean(beanName, exposedObject,
mbd);
 }

 // 4. Bean-
 try {
 registerDisposableBeanIfNecessary(beanName, bean, mbd);
 }

 return exposedObject;
}

public interface BeanPostProcessor {

//
default Object postProcessBeforeInitialization(Object bean,

String beanName) throws BeansException {
return bean;

}

//
default Object postProcessAfterInitialization(Object bean,

String beanName) throws BeansException {
return bean;

}

}

13
14
15
16
17
18
19
20
21
22
23
24

java
1
2
3
4
5
6
7
8
9
10
11
12
13

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 21/51

postProcessBeforeInitialization : After Bean instantiation and property injection
are completed, InitializingBean#afterPropertiesSet the method and the custom
init-method method are executed;
postProcessAfterInitialization : Similar to the above, but executed after
InitializingBean#afterPropertiesSet the method and the custom method. init-
method

InitializingBean and init-method are extension points provided by Spring for Bean
initialization.

Specify init-method the method to specify the initialization method:

How to remember?

1. Overall, it can be simply divided into four steps: instantiation -> property assignment ->
initialization -> destruction.

2. The initialization step involves many steps, including Aware dependency injection of
the interface, BeanPostProcessor processing before and after initialization, and
initialization operations of InitializingBean and . init-method

3. The destruction step will register the relevant destruction callback interface, and finally
destroy it through DisposableBean and . destory-method

Finally, let me share a clear diagram (source: How to Remember the Life Cycle of Spring
Beans).

public interface InitializingBean {
 //

void afterPropertiesSet() throws Exception;
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="demo" class="com.chaycao.Demo" init-method="init()"/>

</beans>

java
1
2
3
4

xml
1
2
3
4
5
6
7
8

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 22/51

https://chaycao.github.io/2020/02/15/%E5%A6%82%E4%BD%95%E8%AE%B0%E5%BF%86Spring-Bean%E7%9A%84%E7%94%9F%E5%91%BD%E5%91%A8%E6%9C%9F.html
https://chaycao.github.io/2020/02/15/%E5%A6%82%E4%BD%95%E8%AE%B0%E5%BF%86Spring-Bean%E7%9A%84%E7%94%9F%E5%91%BD%E5%91%A8%E6%9C%9F.html
https://chaycao.github.io/2020/02/15/%E5%A6%82%E4%BD%95%E8%AE%B0%E5%BF%86Spring-Bean%E7%9A%84%E7%94%9F%E5%91%BD%E5%91%A8%E6%9C%9F.html

AOP (Aspect-Oriented Programming) can encapsulate logic or responsibilities that are not
related to the business but are commonly called by business modules (such as transaction
processing, log management, permission control, etc.), thereby reducing duplicate code in
the system, reducing the coupling between modules, and facilitating future scalability and
maintainability.

Spring AOP is based on dynamic proxy. If the object to be proxied implements an interface,
Spring AOP will use JDK Proxy to create a proxy object. For objects that do not
implement the interface, JDK Proxy cannot be used for proxying. At this time, Spring AOP
will use Cglib to generate a subclass of the proxied object as a proxy, as shown in the
following figure:

Spring AOP

Talk about your understanding of AOP

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 23/51

Of course you can also use AspectJ ! Spring AOP has integrated AspectJ, which should be
considered the most complete AOP framework in the Java ecosystem.

Some professional terms involved in AOP aspect programming:

the
term meaning

Target Notified party

Proxy The proxy object created after applying the advice to the target object

JoinPoint All methods defined in the class of the target object are connection
points

Pointcut Join points intercepted/enhanced by aspects (entry points are always
join points, but join points are not necessarily entry points)

Advice Enhanced logic/code, that is, what to do after intercepting the
connection point of the target object

Aspect Pointcut + Advice

Weaving Apply the notification to the target object, thereby generating the
process action of the proxy object

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 24/51

characteristic Spring AOP AspectJ

Enhancement
method

Runtime enhancement (based
on dynamic proxy)

Compile-time
enhancement, class loading
enhancement (direct
manipulation of bytecode)

Entry point
support

Method level (within the scope
of Spring Bean, final and static
methods are not supported)

Method level, field,
constructor, static method,
etc.

performance

The runtime relies on proxies,
which has a certain overhead
and has low performance when
there are many facets.

Runtime without agent
overhead, higher
performance

Complexity Simple, easy to use, suitable
for most scenarios

Powerful, but relatively
complex

Usage
scenarios

Relatively simple AOP
requirements in Spring
applications

High-performance and
high-complexity AOP
requirements

How to choose?

Functionality considerations : AspectJ supports more complex AOP scenarios,
while Spring AOP is simpler and easier to use. If you need to enhance final methods,
static methods, field access, constructor calls, or apply enhancement logic to non-Spring
managed objects, AspectJ is the only choice.
Performance considerations : When the number of aspects is small, the
performance difference between the two is not significant, but when there are more
aspects, AspectJ performs better.

In a nutshell : Use Spring AOP first for simple scenarios; choose AspectJ for complex
scenarios or high performance requirements.

What is the difference between Spring AOP and AspectJ
AOP?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 25/51

Before (pre-notification): triggered before the target object's method is called
After (post notification): triggered after the target object's method is called
AfterReturning (return notification): triggered after the method call of the target
object is completed and the result value is returned
AfterThrowing (Exception Notification): Triggered after a method on the target object
throws or triggers an exception. AfterReturning and AfterThrowing are mutually
exclusive. If the method call succeeds without exception, a value is returned; if the
method throws an exception, no value is returned.
Around advice: Programmatically control the method call of the target object. Around
advice has the widest range of operation among all advice types. Because it can directly
obtain the target object and the method to be executed, around advice can arbitrarily do
things before or after the target object's method call, or even not call the target object's
method.

What are the common types of AOP advice?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 26/51

1. @Order Annotations are usually used to directly define the order of aspects

2. Implement Ordered the interface rewriting getOrder method.

MVC is the abbreviation of Model, View, Controller. Its core idea is to organize code by
separating business logic, data, and display.

How to control the execution order of multiple aspects?

Spring MVC

Tell us about your understanding of Spring MVC?

//
@Order(3)
@Component
@Aspect
public class LoggingAspect implements Ordered {

@Component
@Aspect
public class LoggingAspect implements Ordered {

 //

 @Override
 public int getOrder() {
 //
 return 1;
 }
}

java
1
2
3
4
5

java
1
2
3
4
5
6
7
8
9
10
11
12

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 27/51

Many people online say that MVC is not a design pattern, but just a software design
specification. I personally prefer to think that MVC is just one of many design patterns.
The java-design-patterns project has an introduction to MVC.

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 28/51

https://github.com/iluwatar/java-design-patterns
https://github.com/iluwatar/java-design-patterns

To truly understand Spring MVC, let's first look at Model 1 and Model 2, the eras without
Spring MVC.

Model 1 Era

Many people who learned Java backend relatively late may not have been exposed to Java
Web application development in the Model 1 era. In Model 1, the entire Web application
was composed almost entirely of JSP pages, with only a small number of JavaBeans used
to handle database connections, access, and other operations.

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 29/51

In this model, JSP serves as both the control layer (Controller) and the presentation layer
(View). Obviously, this model presents numerous problems. For example, the
intermingling of control logic and presentation logic results in extremely low code reuse.
Furthermore, the interdependence between the front-end and back-end makes testing and
maintenance difficult, and significantly reduces development efficiency.

Model 2 Era

Friends who have learned Servlet and made related demos should be familiar with the
development model of "Java Bean (Model) + JSP (View) + Servlet (Controller)", which is
the early JavaWeb MVC development model.

Model: The data involved in the system, that is, dao and beans.
View: Displays the data in the model, just for display.
Controller: accepts user requests, sends the requests to the Model, and finally returns
data to the JSP and displays it to the user

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 30/51

There are still many problems in the Model2 mode. The degree of abstraction and
encapsulation of Model2 is far from enough. When using Model2 for development, it is
inevitable to reinvent the wheel, which greatly reduces the maintainability and reusability
of the program.

As a result, many Java Web development-related MVC frameworks emerged, such as
Struts2, but Struts2 is relatively cumbersome.

Spring MVC Era

With the popularity of the Spring lightweight development framework, the Spring MVC
framework has emerged in the Spring ecosystem. Spring MVC is currently the most
advanced MVC framework. Compared to Struts 2, Spring MVC is simpler and more
convenient to use, more efficient in development, and faster in execution.

MVC is a design pattern, and Spring MVC is an excellent MVC framework. Spring MVC
helps streamline web-tier development and integrates naturally with the Spring
framework. With Spring MVC, backend projects are typically divided into a Service layer
(for business processing), a Dao layer (for database operations), an Entity layer (for entity
classes), and a Controller layer (for returning data to the frontend).

Remember the following components, and you will remember how SpringMVC works.

DispatcherServlet : The core central processing unit , responsible for receiving
requests, distributing them, and giving responses to clients.

What are the core components of Spring MVC?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 31/51

HandlerMapping : The processor mapper matches and searches for the handlers
based on the URL Handler , and encapsulates the interceptors involved in the request
Handler together.
HandlerAdapter Processor adapter , based on HandlerMapping the found
Handler , adapts and executes the corresponding Handler ;
Handler : Request handler , the handler that handles the actual request.
ViewResolver : View resolver , according to Handler the logical view/view

returned, parses and renders the real view and passes it to DispatcherServlet the
response client

The Spring MVC principle is shown in the following figure:

I didn't draw the diagram of how SpringMVC works myself, so I found a very clear and
intuitive one on the Internet to save time. The original source is unknown.

Process description (important):

1. The client (browser) sends a request, DispatcherServlet intercepts the request.
2. DispatcherServlet Called based on the request information HandlerMapping .

HandlerMapping Matches the URL to find the controller that can handle it
Handler (that is, what we usually call Controller a controller), and encapsulates the

interceptors involved in the request Handler .

Do you understand how SpringMVC works?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 32/51

3. DispatcherServlet Call HandlerAdapter the adapter to execute Handler .
4. Handler After completing the processing of the user request, a ModelAndView object

will be returned to the user DispatcherServlet . ModelAndView As the name
suggests, it contains information about the data model and the corresponding view.
Model The returned data object View is a logical one View .

5. ViewResolver Will View find the actual one based on the logic View .
6. DispaterServlet Pass the returned Model to View (view rendering).
7. Return View to the requester (browser)

The above process is how traditional development models (such as JSP and Thymeleaf)
work. However, the current mainstream development approach is to separate the front-
end and back-end. In this context, View the concept of Spring MVC has undergone some
changes. Since View the front-end framework (such as Vue and React) is usually
responsible for handling the page, the back-end is no longer responsible for rendering the
page, but only for providing data. Therefore:

When the front-end and back-end are separated, the back-end usually no longer returns
a specific view, but returns pure data (usually in JSON format), which is rendered and
displayed by the front-end.
View The __register__ part is often not required in scenarios where the front-end and

back-end are separated. The Spring MVC controller method only needs to return data,
ModelAndView and no longer returns. Instead, it returns the data directly, and Spring

will automatically convert it to JSON format. Accordingly, ViewResolver it will no
longer be used.

How to do it?

Use @RestController annotations instead of traditional @Controller annotations so
that all methods will return data in JSON format by default instead of trying to parse
views.
If you are using it @Controller , you can combine it with @ResponseBody annotations
to return JSON.

It is recommended to use annotations to unify exception handling, specifically the two
annotations @ControllerAdvice + will be used. @ExceptionHandler

How to unify exception handling?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 33/51

Controller In this exception handling mode, the exception handling logic (AOP) will be
woven into all or specified . Controller When the method in throws an exception,
@ExceptionHandler it will be handled by the method modified by the annotation.

ExceptionHandlerMethodResolver The method in getMappedMethod the annotation
determines which @ExceptionHandler method will handle the exception.

@ControllerAdvice
@ResponseBody
public class GlobalExceptionHandler {

 @ExceptionHandler(BaseException.class)
 public ResponseEntity<?> handleAppException(BaseException ex,
HttpServletRequest request) {
 //......
 }

 @ExceptionHandler(value = ResourceNotFoundException.class)
 public ResponseEntity<ErrorReponse>
handleResourceNotFoundException(ResourceNotFoundException ex,
HttpServletRequest request) {
 //......
 }
}

@Nullable
 private Method getMappedMethod(Class<? extends Throwable>
exceptionType) {
 List<Class<? extends Throwable>> matches = new ArrayList<>();
 // mappedMethods

 for (Class<? extends Throwable> mappedException :
this.mappedMethods.keySet()) {
 if (mappedException.isAssignableFrom(exceptionType)) {
 matches.add(mappedException);
 }
 }
 //
 if (!matches.isEmpty()) {
 //
 matches.sort(new ExceptionDepthComparator(exceptionType));
 //

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 34/51

From the source code, we can see that: getMappedMethod() first, all the method
information that can match the exception handling method will be found,
then they will be sorted from small to large, and finally the smallest matching
method (that is, the one with the highest matching degree) will be taken.

For a detailed introduction to the following design patterns, please refer to my article
Detailed Explanation of Design Patterns in Spring .

Factory Design Pattern : Spring uses factory pattern to BeanFactory create
ApplicationContext bean objects.

Proxy design pattern : implementation of Spring AOP functionality.
Singleton design pattern : Beans in Spring are singletons by default.
Template method pattern : In Spring jdbcTemplate , hibernateTemplate classes
that end with Template and other classes that operate on the database use the template
pattern.
Wrapper Design Pattern : Our project needs to connect to multiple databases, and
different customers may access different databases as needed during each visit. This
pattern allows us to dynamically switch between different data sources based on
customer needs.
Observer pattern: Spring event-driven model is a classic application of the observer
pattern.
Adapter pattern : Spring AOP enhancement or advice uses the adapter pattern, and
spring MVC also uses the adapter pattern adaptation Controller .
…

What design patterns are used in Spring
Framework?

 return this.mappedMethods.get(matches.get(0));
 }
 else {
 return null;
 }
 }

18
19
20

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 35/51

https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html
https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html

Circular dependency refers to a circular reference between bean objects, where two or
more beans hold references to each other, for example, CircularDependencyA →
CircularDependencyB → CircularDependencyA.

The self-dependence of a single object can also lead to circular dependencies, but the
probability of this is extremely low and is considered a coding error.

The Spring Framework solves this problem by using a three-level cache to ensure that
beans are created correctly even in the presence of circular dependencies.

The three-level cache in Spring is actually three Maps, as follows:

Spring's Circular Dependencies

Do you know about Spring circular dependencies? How to
solve them?

@Component
public class CircularDependencyA {
 @Autowired
 private CircularDependencyB circB;
}

@Component
public class CircularDependencyB {
 @Autowired
 private CircularDependencyA circA;
}

@Component
public class CircularDependencyA {
 @Autowired
 private CircularDependencyA circA;
}

java
1
2
3
4
5
6
7
8
9
10
11

java
1
2
3
4
5

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 36/51

In simple terms, Spring's three-level cache includes:

1. Level 1 cache (singletonObjects) : This cache stores final beans (instantiated,
property-populated, and initialized). This singleton pool is used for Spring's singleton
properties. Generally, beans are retrieved from this pool, but not all beans are stored in
the singleton pool; for example, prototype beans are not.

2. Second-level cache (earlySingletonObjects) : stores transition beans (semi-
finished products, properties not yet filled), that is, objects generated in the third-level
cache. When used in conjunction with the third-level cache, it can prevent the
generation of new proxy objects ObjectFactory for each call in the case of AOP
. ObjectFactory#getObject()

3. Level 3 cache (singletonFactories) : stores ObjectFactory methods
ObjectFactory (the method getObject() that is ultimately called
getEarlyBeanReference()) that can generate the original bean object or proxy object

(if the bean is proxied by an AOP aspect). Level 3 cache only works for singleton beans.

Next, let's talk about the process of Spring creating Beans:

1. First get it from the first-level cache singletonObjects , and return it if it exists;
2. If it does not exist or the object is being created, it is retrieved from the secondary

cache earlySingletonObjects ;
3. If it has not been obtained yet, go to the third-level cache singletonFactories to

obtain it. By executing ObjectFacotry , getObject() you can obtain the object. After
successful acquisition, remove it from the third-level cache and add the object to the
second-level cache.

//
/** Cache of singleton objects: bean name to bean instance. */
private final Map<String, Object> singletonObjects = new
ConcurrentHashMap<>(256);

//
/** Cache of early singleton objects: bean name to bean instance.
*/
private final Map<String, Object> earlySingletonObjects = new
HashMap<>(16);

//
/** Cache of singleton factories: bean name to ObjectFactory. */
private final Map<String, ObjectFactory<?>> singletonFactories =
new HashMap<>(16);

java
1
2
3
4
5
6
7
8
9
10
11

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 37/51

Stored in the third-level cache are ObjectFacoty :

When Spring creates a Bean, if circular dependencies are allowed, Spring will expose the
Bean object that has just been instantiated but whose properties have not yet been
initialized. Here, addSingletonFactory a object is added to the third-level cache through
the method ObjectFactory :

As mentioned above when talking about the process of Spring creating Beans, if neither the
first-level cache nor the second-level cache can get the object, the third-level cache will be
used to get the object through ObjectFactory the getObject method.

Taking the above circular dependency code as an example, the entire process of resolving
circular dependencies is as follows:

After Spring creates A, it finds that A depends on B, so it creates B. B depends on A, so it
creates A again.

public interface ObjectFactory<T> {
 T getObject() throws BeansException;
}

// AbstractAutowireCapableBeanFactory # doCreateBean #
public abstract class AbstractAutowireCapableBeanFactory ... {

protected Object doCreateBean(...) {
 //...

 // ()->getEarlyBeanReference
ObjectFactory getObject()

addSingletonFactory(beanName, () ->
getEarlyBeanReference(beanName, mbd, bean));
 }
}

class A {
 // B
 private B b;
}
class B {
 // A
 private A a;
}

java
1
2
3

java
1
2
3
4
5
6
7
8
9

java
1
2
3
4
5
6
7
8

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 38/51

When B creates A, A has a circular dependency. Since A has not yet been initialized,
there is no A in the first and second level caches .
Then call getObject() the method in the third-level cache to obtain the object
exposed in the early stage of A , that is, call the method added above to generate an
early exposure object getEarlyBeanReference() of A ;
Then ObjectFactory remove this from the third-level cache and put the previously
exposed object into the second-level cache. Then B injects this previously exposed object
into the dependency to support circular dependencies.

Is using only two levels of cache sufficient? Without AOP, it's indeed possible to
resolve circular dependencies using only the first and second levels of cache. However,
when AOP is involved, the third level of cache becomes crucial because it ensures that even
if multiple requests for earlier references are made during the bean creation process, the
same proxy object is always returned, thus avoiding the problem of multiple proxy objects
for the same bean.

Finally, let’s summarize how Spring solves the three-level cache :

In the third-level cache, you only need to remember how Spring supports circular
dependencies. That is, if a circular dependency occurs, go to the third-level
cache singletonFactories and get the object stored in the third-level cache
ObjectFactory and call its getObject() method to obtain the early exposure object of

the circular dependency object (although it has not been initialized yet, you can get the
storage address of the object in the heap), and put this early exposure object into the
second-level cache, so that it will not be initialized repeatedly when there is a circular
dependency!

However, this mechanism has some drawbacks, such as increased memory overhead
(requiring maintenance of a three-level cache, meaning three maps) and reduced
performance (requiring multiple checks and conversions). Furthermore, circular
dependencies are not supported in some cases, such as non-singleton beans and
@Async annotated beans.

@Lazy Used to identify whether a class needs lazy loading/delayed loading. It can be used
on classes, methods, constructors, method parameters, and member variables.

Spring Boot 2.2 adds a global lazy loading property . When enabled, global beans are
set to lazy loading and created when needed.

The configuration file configures global lazy loading:

Can @Lazy resolve circular dependencies?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 39/51

The encoding method sets global lazy loading:

If not necessary, try not to use global lazy loading. Global lazy loading will make the bean
loading slower when it is first used, and it will delay the discovery of application problems
(problems will only appear when the bean is initialized).

If a bean is not marked as lazy, it is created and initialized during Spring IoC container
startup. If a bean is marked as lazy, it is not instantiated immediately when the Spring IoC
container starts, but is created when it is first requested. This can help reduce initialization
time during application startup and can also be used to resolve circular dependencies.

How is the circular dependency problem @Lazy solved? Here's an example: suppose there
are two beans, A and B, with a circular dependency. @Lazy After adding an annotation to
A's constructor (delaying the instantiation of Bean B), the loading process is as follows:

First, Spring will create A's bean, and when creating it, it needs to inject B's properties;
Since A is annotated @Lazy , Spring will create a proxy object of B and inject this proxy
object into the B property in A;
Then start to execute the instantiation and initialization of B. When injecting the A
attribute in B, A has been created at this time and can be injected into it.

From the above loading process, we can see that @Lazy the key to solving circular
dependencies lies in the use of proxy objects.

@Lazy In the absence of : When the Spring container is initialized , A it will try to
create it immediately B , and during the creation B process it will try to create it again
A , which will eventually lead to a circular dependency (that is, infinite recursion and

eventually throw an exception).
@Lazy When using : Spring does not create a HttpClient immediately B . Instead, it

injects a B proxy object for HttpClient. Because HttpClient B is not yet fully initialized,
A HttpClient can complete initialization successfully. The proxy object triggers the
A actual initialization of HttpClient when the HttpClient instance actually calls the

HttpClient method . B B

false
spring.main.lazy-initialization=true

SpringApplication springApplication=new
SpringApplication(Start.class);
springApplication.setLazyInitialization(false);
springApplication.run(args);

properties
1
2

java
1
2
3

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 40/51

@Lazy This can, to a certain extent, break the circular dependency chain, allowing the
Spring container to successfully complete bean creation and injection. However,
@Lazy this isn't a fundamental solution, especially in scenarios like constructor injection

and complex multi-level dependencies. Therefore, best practice remains to avoid circular
dependencies in design.

Prior to Spring Boot 2.6.x, circular dependencies were allowed by default. This meant that
even if your code contained circular dependencies, it generally wouldn't generate an error.
However, Spring Boot 2.6.x and later officially no longer recommends writing code with
circular dependencies. Developers are advised to reduce unnecessary dependencies when
writing code. This is actually the most important thing we should do. Circular
dependencies are a design flaw in themselves, and we shouldn't rely too heavily on Spring
at the expense of coding standards and quality. Perhaps a future Spring Boot version will
completely prohibit circular dependencies.

After SpringBoot 2.6.x, if you don't want to refactor the circular dependency code, you can
also use the following methods:

Set in the global configuration file to allow circular dependencies: spring.main.allow-
circular-references=true . This is the simplest and crudest way, not recommended.
Adding annotations to beans that cause circular dependencies @Lazy is a recommended
approach. @Lazy This annotation is used to indicate whether a class requires lazy
loading or delayed loading. It can be applied to classes, methods, constructors, method
parameters, and member variables.
…

For a detailed introduction to Spring transactions, see my article Spring Transaction
Explanation .

Programmatic transactions : hard-coded in the code (recommended in distributed
systems): transactions are managed manually. If TransactionTemplate the
TransactionManager transaction scope is too large, the transaction will not be

Does SpringBoot allow circular dependencies to occur?

Spring Transactions

How many ways does Spring manage transactions?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 41/51

https://javaguide.cn/system-design/framework/spring/spring-transaction.html
https://javaguide.cn/system-design/framework/spring/spring-transaction.html
https://javaguide.cn/system-design/framework/spring/spring-transaction.html

committed and will cause timeouts. Therefore, the granularity of transactions is smaller
than that of locks.
Declarative transactions : configured in XML configuration files or directly based on
annotations (recommended for single applications or simple business systems): actually
implemented through AOP (@Transactional the full annotation method based on is
most commonly used)

The purpose of transaction propagation is to solve the transaction problem of
mutual calls between business layer methods .

When a transactional method is called by another transactional method, you must specify
how the transaction should propagate. For example, the method may continue to run in
the existing transaction, or it may start a new transaction and run in its own transaction.

Possible values ​​for correct transaction propagation behavior are as follows:

1. TransactionDefinition.PROPAGATION_REQUIRED

@Transactional The most commonly used transaction propagation behavior is the
default behavior for annotations we often use . If a transaction currently exists, it will be
joined; if there is no transaction currently, a new transaction will be created.

2.TransactionDefinition.PROPAGATION_REQUIRES_NEW

Create a new transaction. If a transaction currently exists, suspend the current transaction.
That is, regardless of whether the outer method starts a transaction or not,
Propagation.REQUIRES_NEW the modified inner method will start its own transaction,

and the opened transactions are independent of each other and do not interfere with each
other.

3. TransactionDefinition.PROPAGATION_NESTED

If a transaction currently exists, create a transaction to run as a nested transaction of the
current transaction; if there is no transaction currently, the value is equivalent to
TransactionDefinition.PROPAGATION_REQUIRED .

4. TransactionDefinition.PROPAGATION_MANDATORY

If a transaction currently exists, join the transaction; if no transaction currently exists,
throw an exception. (mandatory: mandatory)

What are the transaction propagation behaviors in Spring
transactions?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 42/51

This is rarely used.

If the following three transaction propagation behaviors are incorrectly configured, the
transaction will not be rolled back:

TransactionDefinition.PROPAGATION_SUPPORTS : If a transaction currently exists,
join the transaction; if there is no transaction currently, continue running in a non-
transactional manner.
TransactionDefinition.PROPAGATION_NOT_SUPPORTED : Run in non-transactional

mode. If a transaction currently exists, suspend the current transaction.
TransactionDefinition.PROPAGATION_NEVER : Run in non-transactional mode and

throw an exception if a transaction currently exists.

Like transaction propagation behavior, Spring also defines an enumeration class for ease of
use: Isolation

Below I will introduce each transaction isolation level in turn:

What are the isolation levels in Spring transactions?

public enum Isolation {

 DEFAULT(TransactionDefinition.ISOLATION_DEFAULT),

READ_UNCOMMITTED(TransactionDefinition.ISOLATION_READ_UNCOMMITTED),
 READ_COMMITTED(TransactionDefinition.ISOLATION_READ_COMMITTED),

REPEATABLE_READ(TransactionDefinition.ISOLATION_REPEATABLE_READ),
 SERIALIZABLE(TransactionDefinition.ISOLATION_SERIALIZABLE);

 private final int value;

 Isolation(int value) {
 this.value = value;
 }

 public int value() {
 return this.value;
 }

}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 43/51

TransactionDefinition.ISOLATION_DEFAULT : Use the default isolation level of the
backend database, the default REPEATABLE_READ isolation level used by MySQL and the
default isolation level used by Oracle READ_COMMITTED .
TransactionDefinition.ISOLATION_READ_UNCOMMITTED : The lowest isolation level.

This isolation level is rarely used because it allows reading of uncommitted data
changes, which may result in dirty reads, phantom reads, or non-repeatable
reads.
TransactionDefinition.ISOLATION_READ_COMMITTED : Allows reading of data that

has been committed by concurrent transactions, which can prevent dirty reads,
but phantom reads or non-repeatable reads may still occur
TransactionDefinition.ISOLATION_REPEATABLE_READ : The results of multiple reads

of the same field are consistent, unless the data is modified by the transaction itself.
Dirty reads and non-repeatable reads can be prevented, but phantom reads
may still occur.
TransactionDefinition.ISOLATION_SERIALIZABLE The highest isolation level, fully

compliant with ACID isolation. All transactions are executed sequentially, preventing
interference between transactions. This level prevents dirty reads, non-
repeatable reads, and phantom reads . However, this level can severely impact
application performance. It is not typically used.

Exception There are two types of exceptions: runtime exceptions
RuntimeException and non-runtime exceptions. Transaction management is crucial for

enterprise applications, as it ensures data consistency even in the event of an exception.

When @Transactional the annotation is applied to a class, all public methods of the class
will have this type of transaction attribute. At the same time, we can also use the
annotation at the method level to override the class level definition.

@Transactional The default rollback policy is to roll back the transaction only when
encountering RuntimeException (Runtime Exception) or (Checked Exception) Error ,
but not Checked Exception (Checked Exception). This is because Spring considers
RuntimeException Error and Error to be unexpected errors, while checked exceptions are

expected errors that can be handled by business logic.

Do you understand the @Transactional(rollbackFor =
Exception.class) annotation?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 44/51

If you want to modify the default rollback strategy, you can use @Transactional the
annotation's rollbackFor and noRollbackFor attributes to specify which exceptions
need to be rolled back and which exceptions do not need to be rolled back. For example, if
you want all exceptions to roll back the transaction, you can use the following annotation:

If you want to prevent certain exceptions from rolling back the transaction, you can use the
following annotations:

The most important thing about JPA is practical application. Here we only summarize a
small part of the knowledge points.

Spring Data JPA

@Transactional(rollbackFor = Exception.class)
public void someMethod() {
// some business logic
}

@Transactional(noRollbackFor = CustomException.class)
public void someMethod() {
// some business logic
}

java
1
2
3
4

java
1
2
3
4

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 45/51

If we have the following class:

What if we want to prevent secrect this field from being persisted, that is, not stored in
the database? We can use the following methods:

Generally, the latter two methods are used more often. I personally use annotations more
often.

How to de-persist a field in the database using JPA?

@Entity(name="USER")
public class User {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "ID")
 private Long id;

 @Column(name="USER_NAME")
 private String userName;

 @Column(name="PASSWORD")
 private String password;

 private String secrect;

}

static String transient1; // not persistent because of static
final String transient2 = "Satish"; // not persistent because of
final
transient String transient3; // not persistent because of transient
@Transient
String transient4; // not persistent because of @Transient

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

java
1
2
3
4
5

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 46/51

The audit function mainly helps us record the specific behavior of database operations,
such as who created a record, when it was created, who last modified it, and when it was
last modified.

@CreatedDate : Indicates that this field is a creation time field. When this entity is
inserted, the value will be set.

@CreatedBy : Indicates that this field is the creator. When this entity is inserted, the
value will be set

@LastModifiedDate , @LastModifiedBy similarly.

What does JPA's auditing feature do? What is its use?

@Data
@AllArgsConstructor
@NoArgsConstructor
@MappedSuperclass
@EntityListeners(value = AuditingEntityListener.class)
public abstract class AbstractAuditBase {

 @CreatedDate
 @Column(updatable = false)
 @JsonIgnore
 private Instant createdAt;

 @LastModifiedDate
 @JsonIgnore
 private Instant updatedAt;

 @CreatedBy
 @Column(updatable = false)
 @JsonIgnore
 private String createdBy;

 @LastModifiedBy
 @JsonIgnore
 private String updatedBy;
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 47/51

@OneToOne : One-on-one.
@ManyToMany : Many-to-many.
@OneToMany : One to many.
@ManyToOne : Many to one.

Many-to-many relationships can also be expressed using @ManyToOne and . @OneToMany

The important thing about Spring Security is actual combat. Here we only summarize a
small part of the knowledge points.

permitAll() : Unconditionally allow any form of access, regardless of whether you are
logged in or not.
anonymous() : Allow anonymous access, that is, you can access it without logging in.
denyAll() : Unconditionally reject any form of access.
authenticated() : Only authenticated users are allowed to access.
fullyAuthenticated() : Only users who are logged in or logged in through remember-

me are allowed to access.
hasRole(String) : Only allow specified roles to access.

What are the annotations for the association
relationships between entities?

Spring Security

What are the ways to control access permissions
requested?

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 48/51

hasAnyRole(String) : Specify one or more roles. Users who meet one of the roles can
access the function.
hasAuthority(String) : Only users with specified permissions are allowed to access
hasAnyAuthority(String) : Specify one or more permissions. Users who meet any of

them can access the service.
hasIpAddress(String) : Only allow users with specified IP addresses to access.

You can take a look at this article by Songge: Is there a difference between hasRole and
hasAuthority in Spring Security? , which introduces it in more detail.

If we need to save sensitive data such as passwords in the database, we need to encrypt it
before saving it.

Spring Security provides a variety of encryption algorithm implementations that are out of
the box and very convenient. The interfaces of these encryption algorithm implementation
classes are as follows PasswordEncoder . If you want to implement an encryption
algorithm yourself, you also need to implement PasswordEncoder the interface.

PasswordEncoder The interface has a total of 3 methods that must be implemented.

Is there a difference between hasRole and hasAuthority?

How to encrypt passwords?

public interface PasswordEncoder {
 //
 String encode(CharSequence var1);
 //
 boolean matches(CharSequence var1, String var2);
 // false
 default boolean upgradeEncoding(String encodedPassword) {
 return false;
 }
}

java
1
2
3
4
5
6
7
8
9
10

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 49/51

https://mp.weixin.qq.com/s/GTNOa2k9_n_H0w24upClRw
https://mp.weixin.qq.com/s/GTNOa2k9_n_H0w24upClRw
https://mp.weixin.qq.com/s/GTNOa2k9_n_H0w24upClRw

The official recommendation is to use an encryption algorithm implementation class based
on the bcrypt strong hash function.

If we suddenly find during the development process that the existing encryption algorithm
cannot meet our needs and need to be replaced with another encryption algorithm, what
should we do at this time?

The recommended approach is DelegatingPasswordEncoder to be compatible with
multiple different password encryption schemes to adapt to different business needs.

As the name suggests, DelegatingPasswordEncoder it is actually a proxy class, not a new
encryption algorithm. What it does is to proxy the encryption algorithm implementation
class mentioned above. After Spring Security 5.0, the default is to
DelegatingPasswordEncoder encrypt passwords based on .

Spring Technology Insider
"Learn Spring in Depth from Scratch": https://juejin.cn/book/6857911863016390663
http://www.cnblogs.com/wmyskxz/p/8820371.html
https://www.journaldev.com/2696/spring-interview-questions-and-answers
https://www.edureka.co/blog/interview-questions/spring-interview-questions/

How to gracefully change the encryption algorithm used
by the system?

refer to

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 50/51

https://juejin.cn/book/6857911863016390663
https://juejin.cn/book/6857911863016390663
http://www.cnblogs.com/wmyskxz/p/8820371.html
http://www.cnblogs.com/wmyskxz/p/8820371.html
https://www.journaldev.com/2696/spring-interview-questions-and-answers
https://www.journaldev.com/2696/spring-interview-questions-and-answers
https://www.edureka.co/blog/interview-questions/spring-interview-questions/
https://www.edureka.co/blog/interview-questions/spring-interview-questions/

https://www.cnblogs.com/clwydjgs/p/9317849.html
https://howtodoinjava.com/interview-questions/top-spring-interview-questions-with-
answers/
http://www.tomaszezula.com/2014/02/09/spring-series-part-5-component-vs-bean/
https://stackoverflow.com/questions/34172888/difference-between-bean-and-
autowired

Recently Updated2025/1/16 11:54
Contributors: SnailClimb , Enda Lin , yellowgg , wangxiaowu , Kou Shuang , Snailclimb , shuang.kou ,

ipofss , Weiyang Zhu , guide , Sumeet Mahajan , cncsl , Tan Jiuding , TommyMerlin , anaer , huhongtao
, kaka2634 , liubobo , fjut_shark , Guide , Mr.Hope , DaZuiZui , jun , 843294669 , aucub , imlee2021 ,

1020325258 , qksuki

Copyright © 2025 Guide

9/22/25, 2:38 PM Summary of Common Spring Interview Questions | JavaGuide

https://javaguide.cn/system-design/framework/spring/spring-knowledge-and-questions-summary.html#spring-事务中的隔离级别有哪几种 51/51

https://www.cnblogs.com/clwydjgs/p/9317849.html
https://www.cnblogs.com/clwydjgs/p/9317849.html
https://howtodoinjava.com/interview-questions/top-spring-interview-questions-with-answers/
https://howtodoinjava.com/interview-questions/top-spring-interview-questions-with-answers/
https://howtodoinjava.com/interview-questions/top-spring-interview-questions-with-answers/
http://www.tomaszezula.com/2014/02/09/spring-series-part-5-component-vs-bean/
http://www.tomaszezula.com/2014/02/09/spring-series-part-5-component-vs-bean/
https://stackoverflow.com/questions/34172888/difference-between-bean-and-autowired
https://stackoverflow.com/questions/34172888/difference-between-bean-and-autowired
https://stackoverflow.com/questions/34172888/difference-between-bean-and-autowired

