
Pooling technology is undoubtedly familiar to everyone. Thread pools, database connection
pools, HTTP connection pools, and more are all applications of this concept. The main
purpose of pooling technology is to reduce the consumption of each resource acquisition
and improve resource utilization.

In this article, I will introduce the basic concepts and core principles of thread pools in
detail.

As the name suggests, a thread pool is a resource pool that manages a series of threads. It
provides a way to limit and manage thread resources. Each thread pool also maintains
some basic statistics, such as the number of completed tasks.

Here I borrow some content from the book "The Art of Java Concurrency Programming" to
summarize the benefits of using thread pools:

Reduce resource consumption . By reusing existing threads, you can reduce the
consumption caused by thread creation and destruction.
Improve responsiveness . When a task arrives, it can be executed immediately
without waiting for a thread to be created.
Improve thread manageability . Threads are a scarce resource. If they are created
without limit, they will not only consume system resources but also reduce system
stability. Using a thread pool allows for unified allocation, tuning, and monitoring.

Thread pools are generally used to execute multiple unrelated time-
consuming tasks. Without multithreading, tasks are executed sequentially.
Using a thread pool allows multiple unrelated tasks to be executed
simultaneously.

Thread Pool Introduction

Java Thread Pool Detailed
Explanation

Guide Java About 8577 words About 29 minutesJava Concurrency

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 1/32

https://javaguide.cn/article/

Executor The framework was introduced after Java 5. After Java 5, Executor starting
threads through is better than using the method Thread of . start In addition to being
easier to manage and more efficient (implemented with a thread pool to save overhead),
there is another key point: it helps avoid the "this" escape problem.

This escape means that other threads hold a reference to the object before the
constructor returns. Calling methods on objects that have not been fully constructed
may cause confusing errors.

Executor The framework not only includes thread pool management, but also provides
thread factories, queues, and rejection strategies. Executor The framework makes
concurrent programming easier.

Executor The framework structure mainly consists of three parts:

1. Task (Runnable / Callable)

Runnable The interface or Callable interfaces that need to be implemented to
perform the task . Runnable Interfaces or Callable interface implementation classes
can be executed by ThreadPoolExecutor or ScheduledThreadPoolExecutor .

2. Task execution (Executor)

As shown in the figure below, it includes the core interface of the task execution
mechanism Executor and the interface inherited Executor from the interface
ExecutorService . ThreadPoolExecutor The two key classes , and ,
ScheduledThreadPoolExecutor implement ExecutorService the interface.

Introduction to the Executor Framework

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 2/32

A lot of underlying class relationships are mentioned here, but in fact we need to pay more
attention to ThreadPoolExecutor this class, which is used very frequently in our actual
use of thread pools.

Note: By looking at ScheduledThreadPoolExecutor the source code, we find
ScheduledThreadPoolExecutor that actually inherits ThreadPoolExecutor and

implements ScheduledExecutorService , which ScheduledExecutorService in turn
implements ExecutorService , as shown in the class relationship diagram given above.

ThreadPoolExecutor Class Description:

ScheduledThreadPoolExecutor Class Description:

3. Results of asynchronous calculations (Future)

Future Both interfaces and Future interface implementation classes FutureTask can
represent the results of asynchronous computations.

//AbstractExecutorService实现了ExecutorService接口
public class ThreadPoolExecutor extends AbstractExecutorService

//ScheduledExecutorService继承ExecutorService接口
public class ScheduledThreadPoolExecutor
 extends ThreadPoolExecutor
 implements ScheduledExecutorService

java
1
2

java
1
2
3
4

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 3/32

When we submit the implementation class of Runnable interface or
Callable interface ThreadPoolExecutor to or ScheduledThreadPoolExecutor for

execution. (submit() When calling the method, a FutureTask object will be returned)

Executor Framework usage diagram :

1. The main thread must first create a task object that implements the Runnable or
Callable interface.

2. Submit the created implementation Runnable / Callable interface object directly
ExecutorService to Execute: ExecutorService.execute（Runnable command）) or

you can submit Runnable the object or Callable object to ExecutorService Execute
(ExecutorService.submit（Runnable task） or ExecutorService.submit
（Callable <T> task）).

3. If executed ExecutorService.submit（…） , ExecutorService it will return an
Future object that implements the interface (we have just mentioned the difference

between the execution execute() method and submit() the method,
submit() which will return an FutureTask 对象）。由于 FutureTask implementation
Runnable . We can also create it FutureTask and then directly hand it over
ExecutorService to execution.

4. Finally, the main thread can execute FutureTask.get() methods to wait for the task to
complete. The main thread can also execute FutureTask.cancel（boolean
mayInterruptIfRunning） to cancel the execution of this task.

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 4/32

The thread pool implementation class ThreadPoolExecutor is Executor the core class of
the framework.

ThreadPoolExecutor The class provides four constructors. Let's look at the longest one,
and the other three are generated based on this constructor (the other constructors are
basically constructors that give certain default parameters, such as what the default
rejection policy is).

Introduction to the ThreadPoolExecutor class
(important)

Thread pool parameter analysis

 /**
 * 用给定的初始参数创建一个新的ThreadPoolExecutor。
 */
 public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
 int maximumPoolSize,//线程池的最大线程数
 long keepAliveTime,//当线程数大于核心线
程数时，多余的空闲线程存活的最长时间

 TimeUnit unit,//时间单位
 BlockingQueue<Runnable> workQueue,//
任务队列，用来储存等待执行任务的队列

 ThreadFactory threadFactory,//线程工
厂，用来创建线程，一般默认即可

 RejectedExecutionHandler handler//拒绝
策略，当提交的任务过多而不能及时处理时，我们可以定制策略来处理任务

) {
 if (corePoolSize < 0 ||
 maximumPoolSize <= 0 ||
 maximumPoolSize < corePoolSize ||
 keepAliveTime < 0)
 throw new IllegalArgumentException();
 if (workQueue == null || threadFactory == null || handler
== null)
 throw new NullPointerException();
 this.corePoolSize = corePoolSize;
 this.maximumPoolSize = maximumPoolSize;

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 5/32

The following parameters are very important and you will definitely need them later when
using the thread pool! So, be sure to take a small notebook and write them down clearly.

ThreadPoolExecutor The 3 most important parameters are:

corePoolSize : The maximum number of threads that can run simultaneously when
the task queue has not reached the queue capacity.
maximumPoolSize : When the number of tasks stored in the task queue reaches the

queue capacity, the number of threads that can currently run simultaneously becomes
the maximum number of threads.
workQueue : When a new task comes, it will first determine whether the number of

currently running threads reaches the number of core threads. If so, the new task will be
stored in the queue.

ThreadPoolExecutor Other common parameters:

keepAliveTime : When the number of threads in the thread pool is greater
corePoolSize than , if no new tasks are submitted at this time, the threads outside the

core threads will not be destroyed immediately, but will wait until the waiting time
exceeds and keepAliveTime then be recycled and destroyed.
unit : keepAliveTime The time unit of the parameter.
threadFactory :executor is used when creating a new thread.
handler :Rejection strategy (will be introduced in detail later).

The following diagram can help you better understand the relationship between various
parameters in the thread pool (Image source: "Java Performance Tuning Practice"):

 this.workQueue = workQueue;
 this.keepAliveTime = unit.toNanos(keepAliveTime);
 this.threadFactory = threadFactory;
 this.handler = handler;
 }

25

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 6/32

ThreadPoolExecutor Deny policy definition:

If the number of threads currently running simultaneously reaches the maximum number
of threads and the queue is full of tasks, ThreadPoolExecutor define some strategies:

ThreadPoolExecutor.AbortPolicy : Throw RejectedExecutionException to reject
the processing of new tasks.
ThreadPoolExecutor.CallerRunsPolicy Calls the execution thread to run the task,

that is, execute runs the task directly in the calling thread. (run) Rejected tasks are
discarded if the executor is shut down. Therefore, this strategy slows down the
submission of new tasks, affecting overall application performance. If your application
can tolerate this delay and you require that all task requests be executed, you can choose
this strategy.
ThreadPoolExecutor.DiscardPolicy : Do not process new tasks and discard them

directly.
ThreadPoolExecutor.DiscardOldestPolicy : This strategy will discard the oldest

unprocessed task request.

For example:

For example, when Spring creates a thread pool ThreadPoolTaskExecutor directly
through ThreadPoolExecutor the constructor, if we do not specify
RejectedExecutionHandler a rejection strategy to configure the thread pool, the default

rejection strategy is used AbortPolicy . Under this rejection strategy, if the queue is full,

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 7/32

an exception ThreadPoolExecutor will be thrown RejectedExecutionException to
reject new tasks, which means you will lose the processing of this task. If you do not want
to discard tasks, you can use this strategy CallerRunsPolicy .
CallerRunsPolicy Unlike the other strategies, it neither discards tasks nor throws

exceptions. Instead, it returns the task to the caller and uses the caller's thread to execute
the task.

In Java, there are two main ways to create a thread pool:

Method 1: ThreadPoolExecutor Create directly through the constructor
(recommended)

Two ways to create a thread pool

public static class CallerRunsPolicy implements
RejectedExecutionHandler {

 public CallerRunsPolicy() { }

 public void rejectedExecution(Runnable r,
ThreadPoolExecutor e) {
 if (!e.isShutdown()) {
 // 直接主线程执行，而不是线程池中的线程执行
 r.run();
 }
 }
 }

java
1
2
3
4
5
6
7
8
9
10
11

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 8/32

This is the most recommended approach because it allows developers to explicitly specify
the core parameters of the thread pool and have more precise control over the running
behavior of the thread pool, thereby avoiding the risk of resource exhaustion.

Method 2: Executors Create through tool class (not recommended for
production environment)

Executors The method for creating a thread pool provided by the tool class is shown in
the following figure:

Executors It can be seen that various types of thread pools can be created through tool
classes, including:

FixedThreadPool A thread pool with a fixed number of threads. The number of
threads in this thread pool remains constant. When a new task is submitted, it is
immediately executed if there are idle threads in the thread pool. If not, the new task is
temporarily stored in a task queue and processed when a free thread becomes available.
SingleThreadExecutor : A thread pool with only one thread. If more than one task is

submitted to the thread pool, the tasks are stored in a task queue and executed in first-
in, first-out order when a thread becomes idle.
CachedThreadPool A thread pool with adjustable thread counts. The number of

threads in the thread pool is fixed, but if there are idle threads available for reuse, they
will be prioritized. If all threads are busy and a new task is submitted, a new thread will
be created to handle the task. After all threads complete their current tasks, they will be
returned to the thread pool for reuse.

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 9/32

ScheduledThreadPool : A thread pool that runs tasks after a given delay or executes
tasks periodically.

The Alibaba Java Development Manual prohibits thread pools from Executors being
created using , but rather through ThreadPoolExecutor the constructor. This approach
allows coders to more clearly understand the thread pool's operating rules and avoid the
risk of resource exhaustion.

Executors The disadvantages of returning the thread pool object are as follows (which
will be described in detail later):

FixedThreadPool And SingleThreadExecutor : A blocking queue is used
LinkedBlockingQueue , and the maximum length of the task queue is
Integer.MAX_VALUE , which can be regarded as unbounded. A large number of

requests may accumulate, resulting in OOM.
CachedThreadPool : Using a synchronous queue SynchronousQueue , the number of

threads allowed to be created is Integer.MAX_VALUE . If the number of tasks is too
large and the execution speed is slow, a large number of threads may be created,
resulting in OOM.
ScheduledThreadPool And SingleThreadScheduledExecutor : The unbounded

delayed blocking queue used DelayedWorkQueue , the maximum length of the task
queue is Integer.MAX_VALUE , a large number of requests may accumulate, resulting in
OOM.

public static ExecutorService newFixedThreadPool(int nThreads) {
 // LinkedBlockingQueue 的默认长度为 Integer.MAX_VALUE，可以看作是无
界的

 return new ThreadPoolExecutor(nThreads, nThreads,0L,
TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());

}

public static ExecutorService newSingleThreadExecutor() {
 // LinkedBlockingQueue 的默认长度为 Integer.MAX_VALUE，可以看作是无
界的

 return new FinalizableDelegatedExecutorService (new
ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new
LinkedBlockingQueue<Runnable>()));

}

// 同步队列 SynchronousQueue，没有容量，最大线程数是 Integer.MAX_VALUE`

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 10/32

When a new task arrives, it will first determine whether the number of currently running
threads reaches the number of core threads. If so, the new task will be stored in the queue.

Different thread pools will use different blocking queues, which we can analyze in
combination with the built-in thread pool.

(Unbounded queue) with capacity: Integer.MAX_VALUE and . At most , only the
number of core threads can be created (the number of core threads and the maximum
number of threads are equal), and only one thread can be created (the number of core
threads and the maximum number of threads are both 1). The task queues of both will
never be
full. LinkedBlockingQueue FixedThreadPool SingleThreadExector FixedThreadP
ool SingleThreadExector
SynchronousQueue (Synchronous Queue): It has no capacity and does not store

elements CachedThreadPool . SynchronousQueue Its purpose is to ensure that if a free
thread is available, it will be used to process the submitted task; otherwise, a new thread
will be created to process the task. In other words, CachedThreadPool the maximum
number of threads is Integer.MAX_VALUE , which can be understood as infinitely
scalable. This may create a large number of threads, leading to OOM errors.
DelayedWorkQueue Delayed Blocking Queue: The internal elements of the
ScheduledThreadPool queue are not sorted by the time they were added, but rather by

Summary of commonly used blocking queues in thread
pools

public static ExecutorService newCachedThreadPool() {

 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L,
TimeUnit.SECONDS,new SynchronousQueue<Runnable>());

}

// DelayedWorkQueue（延迟阻塞队列）
public static ScheduledExecutorService newScheduledThreadPool(int
corePoolSize) {
 return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
 new DelayedWorkQueue());
}

19
20
21
22
23
24
25
26
27

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 11/32

the length of their delay. The internal "heap" data structure ensures that the task
dequeued is the one with the earliest execution time in the queue. When the queue is
full, it automatically expands to half its original capacity, meaning it never blocks. The
maximum expansion capacity is achievable , so it can only create a maximum of the
number of core
threads. SingleThreadScheduledExecutor DelayedWorkQueue DelayedWorkQueue I
nteger.MAX_VALUE

We have explained Executor the framework and class above. Now let's put it into practice
and review the above content ThreadPoolExecutor by writing a small
Demo. ThreadPoolExecutor

First, create an Runnable implementation class of the interface (of course, it can also be
Callable an interface, we will introduce the difference between the two later.)

MyRunnable.java

Analysis of thread pool principles (important)

Thread pool sample code

import java.util.Date;

/**
 * 这是一个简单的Runnable类，需要大约5秒钟来执行其任务。
 * @author shuang.kou
 */
public class MyRunnable implements Runnable {

 private String command;

 public MyRunnable(String s) {
 this.command = s;
 }

 @Override
 public void run() {
 System.out.println(Thread.currentThread().getName() + "
Start. Time = " + new Date());
 processCommand();

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 12/32

When writing a test program, we use ThreadPoolExecutor the method recommended by
Alibaba to create a thread pool using constructor custom parameters.

ThreadPoolExecutorDemo.java

 System.out.println(Thread.currentThread().getName() + "
End. Time = " + new Date());
 }

 private void processCommand() {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 @Override
 public String toString() {
 return this.command;
 }
}

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class ThreadPoolExecutorDemo {

 private static final int CORE_POOL_SIZE = 5;
 private static final int MAX_POOL_SIZE = 10;
 private static final int QUEUE_CAPACITY = 100;
 private static final Long KEEP_ALIVE_TIME = 1L;
 public static void main(String[] args) {

 //使用阿里巴巴推荐的创建线程池的方式
 //通过ThreadPoolExecutor构造函数自定义参数创建
 ThreadPoolExecutor executor = new ThreadPoolExecutor(
 CORE_POOL_SIZE,
 MAX_POOL_SIZE,
 KEEP_ALIVE_TIME,
 TimeUnit.SECONDS,
 new ArrayBlockingQueue<>(QUEUE_CAPACITY),

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 13/32

You can see that the code above specifies:

corePoolSize : The number of core threads is 5.
maximumPoolSize : Maximum number of threads: 10
keepAliveTime : The waiting time is 1L.
unit : The unit of waiting time is TimeUnit.SECONDS.
workQueue ：The task queue is ArrayBlockingQueue and the capacity is 100;
handler :Rejection strategy is CallerRunsPolicy .

Output structure :

 new ThreadPoolExecutor.CallerRunsPolicy());

 for (int i = 0; i < 10; i++) {
 //创建WorkerThread对象（WorkerThread类实现了Runnable 接口）
 Runnable worker = new MyRunnable("" + i);
 //执行Runnable
 executor.execute(worker);
 }
 //终止线程池
 executor.shutdown();
 while (!executor.isTerminated()) {
 }
 System.out.println("Finished all threads");
 }
}

pool-1-thread-3 Start. Time = Sun Apr 12 11:14:37 CST 2020
pool-1-thread-5 Start. Time = Sun Apr 12 11:14:37 CST 2020
pool-1-thread-2 Start. Time = Sun Apr 12 11:14:37 CST 2020
pool-1-thread-1 Start. Time = Sun Apr 12 11:14:37 CST 2020
pool-1-thread-4 Start. Time = Sun Apr 12 11:14:37 CST 2020
pool-1-thread-3 End. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-4 End. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-1 End. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-5 End. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-1 Start. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-2 End. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-5 Start. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-4 Start. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-3 Start. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-2 Start. Time = Sun Apr 12 11:14:42 CST 2020
pool-1-thread-1 End. Time = Sun Apr 12 11:14:47 CST 2020

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

plain
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 14/32

From the output of the previous code, we can see that the thread pool will first
execute 5 tasks. Then, when these tasks are completed, it will pick up new
tasks to execute. You can first analyze what is going on based on the above explanation.
(Think about it for a while.)

Now, let's analyze the above output to briefly analyze the principle of thread pool.

In order to understand the principle of thread pool, we need to first analyze execute the
method. In the sample code, we use executor.execute(worker) to submit a task to the
thread pool.

This method is very important. Let's take a look at its source code:

Analysis of thread pool principles

pool-1-thread-4 End. Time = Sun Apr 12 11:14:47 CST 2020
pool-1-thread-5 End. Time = Sun Apr 12 11:14:47 CST 2020
pool-1-thread-3 End. Time = Sun Apr 12 11:14:47 CST 2020
pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020
Finished all threads // 任务全部执行完了才会跳出来，因为
executor.isTerminated()判断为true了才会跳出while循环，当且仅当调用
shutdown() 方法后，并且所有提交的任务完成后返回为 true

 // 存放线程池的运行状态 (runState) 和线程池内有效线程的数量
(workerCount)
 private final AtomicInteger ctl = new
AtomicInteger(ctlOf(RUNNING, 0));

 private static int workerCountOf(int c) {
 return c & CAPACITY;
 }
 //任务队列
 private final BlockingQueue<Runnable> workQueue;

 public void execute(Runnable command) {
 // 如果任务为null，则抛出异常。
 if (command == null)
 throw new NullPointerException();
 // ctl 中保存的线程池当前的一些状态信息
 int c = ctl.get();

 // 下面会涉及到 3 步 操作

16
17
18
19
20
21

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 15/32

Here is a brief analysis of the entire process (the entire logic is simplified for easy
understanding):

1. If the number of currently running threads is less than the number of core threads, a
new thread will be created to execute the task.

2. If the number of currently running threads is equal to or greater than the number of
core threads, but less than the maximum number of threads, then the task is placed in
the task queue and waits for execution.

3. If the task fails to be put into the task queue (the task queue is full), but the number of
currently running threads is less than the maximum number of threads, a new thread is
created to execute the task.

 // 1.首先判断当前线程池中执行的任务数量是否小于 corePoolSize
 // 如果小于的话，通过addWorker(command, true)新建一个线程，并将任
务(command)添加到该线程中；然后，启动该线程从而执行任务。
 if (workerCountOf(c) < corePoolSize) {
 if (addWorker(command, true))
 return;
 c = ctl.get();
 }
 // 2.如果当前执行的任务数量大于等于 corePoolSize 的时候就会走到这
里，表明创建新的线程失败。

 // 通过 isRunning 方法判断线程池状态，线程池处于 RUNNING 状态并且
队列可以加入任务，该任务才会被加入进去

 if (isRunning(c) && workQueue.offer(command)) {
 int recheck = ctl.get();
 // 再次获取线程池状态，如果线程池状态不是 RUNNING 状态就需要从任
务队列中移除任务，并尝试判断线程是否全部执行完毕。同时执行拒绝策略。

 if (!isRunning(recheck) && remove(command))
 reject(command);
 // 如果当前工作线程数量为0，新创建一个线程并执行。
 else if (workerCountOf(recheck) == 0)
 addWorker(null, false);
 }
 //3. 通过addWorker(command, false)新建一个线程，并将任务
(command)添加到该线程中；然后，启动该线程从而执行任务。
 // 传入 false 代表增加线程时判断当前线程数是否少于 maxPoolSize
 //如果addWorker(command, false)执行失败，则通过reject()执行相应
的拒绝策略的内容。

 else if (!addWorker(command, false))
 reject(command);
 }

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 16/32

4. If the number of currently running threads is equal to the maximum number of threads,
creating a new thread will cause the currently running threads to exceed the maximum
number of threads, then the current task will be rejected and the rejection strategy will
call RejectedExecutionHandler.rejectedExecution() the method.

In execute the method, call addWorker the method multiple times. addWorker This
method is mainly used to create a new worker thread. If it returns true, it means that the
worker thread is created and started successfully. Otherwise, it returns false.

 // 全局锁，并发操作必备
 private final ReentrantLock mainLock = new ReentrantLock();
 // 跟踪线程池的最大大小，只有在持有全局锁mainLock的前提下才能访问此集合
 private int largestPoolSize;
 // 工作线程集合，存放线程池中所有的（活跃的）工作线程，只有在持有全局锁
mainLock的前提下才能访问此集合
 private final HashSet<Worker> workers = new HashSet<>();
 //获取线程池状态
 private static int runStateOf(int c) { return c &
~CAPACITY; }
 //判断线程池的状态是否为 Running
 private static boolean isRunning(int c) {
 return c < SHUTDOWN;
 }

 /**
 * 添加新的工作线程到线程池
 * @param firstTask 要执行
 * @param core参数为true的话表示使用线程池的基本大小，为false使用线程池
最大大小

 * @return 添加成功就返回true否则返回false
 */
 private boolean addWorker(Runnable firstTask, boolean core) {
 retry:
 for (;;) {

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 17/32

 //这两句用来获取线程池的状态
 int c = ctl.get();
 int rs = runStateOf(c);

 // Check if queue empty only if necessary.
 if (rs >= SHUTDOWN &&
 ! (rs == SHUTDOWN &&
 firstTask == null &&
 ! workQueue.isEmpty()))
 return false;

 for (;;) {
 //获取线程池中工作的线程的数量
 int wc = workerCountOf(c);
 // core参数为false的话表明队列也满了，线程池大小变为
maximumPoolSize
 if (wc >= CAPACITY ||
 wc >= (core ? corePoolSize : maximumPoolSize))
 return false;
 //原子操作将workcount的数量加1
 if (compareAndIncrementWorkerCount(c))
 break retry;
 // 如果线程的状态改变了就再次执行上述操作
 c = ctl.get();
 if (runStateOf(c) != rs)
 continue retry;
 // else CAS failed due to workerCount change; retry
inner loop
 }
 }
 // 标记工作线程是否启动成功
 boolean workerStarted = false;
 // 标记工作线程是否创建成功
 boolean workerAdded = false;
 Worker w = null;
 try {

 w = new Worker(firstTask);
 final Thread t = w.thread;
 if (t != null) {
 // 加锁
 final ReentrantLock mainLock = this.mainLock;
 mainLock.lock();

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 18/32

 try {
 //获取线程池状态
 int rs = runStateOf(ctl.get());
 //rs < SHUTDOWN 如果线程池状态依然为RUNNING,并且线程
的状态是存活的话，就会将工作线程添加到工作线程集合中

 //(rs=SHUTDOWN && firstTask == null)如果线程池状态小
于STOP，也就是RUNNING或者SHUTDOWN状态下，同时传入的任务实例firstTask为
null，则需要添加到工作线程集合和启动新的Worker
 // firstTask == null证明只新建线程而不执行任务
 if (rs < SHUTDOWN ||
 (rs == SHUTDOWN && firstTask == null)) {
 if (t.isAlive()) // precheck that t is
startable
 throw new
IllegalThreadStateException();
 workers.add(w);
 //更新当前工作线程的最大容量
 int s = workers.size();
 if (s > largestPoolSize)
 largestPoolSize = s;
 // 工作线程是否启动成功
 workerAdded = true;
 }
 } finally {
 // 释放锁
 mainLock.unlock();
 }
 //// 如果成功添加工作线程，则调用Worker内部的线程实例t的
Thread#start()方法启动真实的线程实例
 if (workerAdded) {
 t.start();
 /// 标记线程启动成功
 workerStarted = true;
 }
 }
 } finally {
 // 线程启动失败，需要从工作线程中移除对应的Worker
 if (! workerStarted)
 addWorkerFailed(w);
 }
 return workerStarted;
 }

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 19/32

For more information about thread pool source code analysis, please refer to this article:
Hard-core dry goods: 4W words from the source code to analyze the implementation
principle of JUC thread pool ThreadPoolExecutor

Now, let's go back to the example code. Shouldn't it be easy to understand its principle
now?

If you don’t understand, it doesn’t matter, you can take a look at my analysis:

We simulated 10 tasks in our code, configured the number of core threads to be 5 and
the waiting queue capacity to be 100. Therefore, only 5 tasks can be executed
simultaneously at any one time, and the remaining 5 tasks are placed in the waiting
queue. If any of the current 5 tasks is completed, the thread pool will pick up a new task
to execute.

Runnable While interfaces have existed since Java 1.0 but Callable were introduced in
Java 1.5 to handle Runnable unsupported use cases, Runnable they don't return results
or throw checked exceptions. However, Callable interfaces can. Therefore, if a task
doesn't need to return results or throw exceptions, it's recommended to use
Runnable interfaces; this will result in cleaner code.

The tool class Executors can convert Runnable the object into Callable the object. (
Executors.callable(Runnable task) or Executors.callable(Runnable task,
Object result)).

Runnable.java

Callable.java

Several common comparisons

Runnable vs Callable

@FunctionalInterface
public interface Runnable {
 /**
 * 被线程执行，没有返回值也无法抛出异常
 */
 public abstract void run();
}

java
1
2
3
4
5
6
7

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 20/32

https://www.throwx.cn/2020/08/23/java-concurrency-thread-pool-executor/
https://www.throwx.cn/2020/08/23/java-concurrency-thread-pool-executor/
https://www.throwx.cn/2020/08/23/java-concurrency-thread-pool-executor/

execute() There submit() are two ways to submit tasks to the thread pool, with some
differences:

Return Value : execute() This method is used to submit tasks that do not require a
return value. It is typically used to execute Runnable tasks, where it is impossible to
determine whether the task was successfully executed by the thread pool. The
__register__ submit() method is used to submit tasks that require a return value. You
can submit either __register__ Runnable or Callable __register__ tasks. This
submit() method returns a __register__ object, which can be used to determine the

success of the task and obtain the task's return value. (This method blocks the current
thread until the task completes and has a timeout period; if the task is not completed
within the __register__ timeout, an error message will be thrown
.) Future Future get() get（long timeout，TimeUnit unit）
timeout java.util.concurrent.TimeoutException

Exception handling : submit() When using the method, you can use Future the
object to handle exceptions thrown during task execution; when using execute() the
method, exception handling needs to be handled by custom (setting objects to handle
exceptions ThreadFactory when the thread factory creates a thread) or the method
of UncaughtExceptionHandler ThreadPoolExecutor afterExecute()

Example 1: Using get() a method to get the return value.

execute() vs submit()

@FunctionalInterface
public interface Callable<V> {
 /**
 * 计算结果，或在无法这样做时抛出异常。
 * @return 计算得出的结果
 * @throws 如果无法计算结果，则抛出异常
 */
 V call() throws Exception;
}

// 这里只是为了演示使用，推荐使用 `ThreadPoolExecutor` 构造方法来创建线程
池。

ExecutorService executorService = Executors.newFixedThreadPool(3);

Future<String> submit = executorService.submit(() -> {
 try {
 Thread.sleep(5000L);

java
1
2
3
4
5
6
7
8
9

java
1
2
3
4
5
6
7

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 21/32

Output:

Example 2: Using get（long timeout，TimeUnit unit） a method to get the return
value.

Output:

shutdown（） : Close the thread pool, and the state of the thread pool becomes
SHUTDOWN . The thread pool no longer accepts new tasks, but the tasks in the queue

shutdown() VS shutdownNow()

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 return "abc";
});

String s = submit.get();
System.out.println(s);
executorService.shutdown();

abc

ExecutorService executorService = Executors.newFixedThreadPool(3);

Future<String> submit = executorService.submit(() -> {
 try {
 Thread.sleep(5000L);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 return "abc";
});

String s = submit.get(3, TimeUnit.SECONDS);
System.out.println(s);
executorService.shutdown();

Exception in thread "main" java.util.concurrent.TimeoutException
 at java.util.concurrent.FutureTask.get(FutureTask.java:205)

8
9
10
11
12
13
14
15

plain
1

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14

plain
1
2

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 22/32

must be completed.
shutdownNow（） : Close the thread pool, and the thread pool status changes to STOP .

The thread pool terminates the currently running task, stops processing queued tasks,
and returns a list of tasks waiting to be executed.

isShutDown When the method is called shutdown() , it returns true.
isTerminated When the method is called shutdown() and all submitted tasks are

completed, it returns true

FixedThreadPool It is called a thread pool that can reuse a fixed number of threads.
Executors Let's take a look at the relevant implementation through the relevant source

code in the class:

There is another FixedThreadPool implementation method, which is similar to the
above, so I will not elaborate on it here:

isTerminated() VS isShutdown()

Several common built-in thread pools

FixedThreadPool

introduce

 /**
 * 创建一个可重用固定数量线程的线程池
 */
 public static ExecutorService newFixedThreadPool(int nThreads,
ThreadFactory threadFactory) {
 return new ThreadPoolExecutor(nThreads, nThreads,
 0L, TimeUnit.MILLISECONDS,
 new
LinkedBlockingQueue<Runnable>(),
 threadFactory);
 }

java
1
2
3
4
5
6
7
8
9

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 23/32

From the source code above, we can see that the newly created FixedThreadPool and
corePoolSize are maximumPoolSize set to nThreads , and this nThreads parameter is

passed by ourselves when we use it.

Even if maximumPoolSize the value of is corePoolSize greater than , at most
corePoolSize threads will be created. This is because FixedThreadPool uses an

unbounded queue with a capacity Integer.MAX_VALUE of , which will never be
full. LinkedBlockingQueue

FixedThreadPool Method execute() running diagram (the picture comes from "The Art
of Java Concurrency Programming"):

Introduction to the task execution process

 public static ExecutorService newFixedThreadPool(int nThreads)
{
 return new ThreadPoolExecutor(nThreads, nThreads,
 0L, TimeUnit.MILLISECONDS,
 new
LinkedBlockingQueue<Runnable>());
 }

java
1
2
3
4
5

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 24/32

The above picture shows:

1. If the number of currently running threads is less than corePoolSize , if a new task
comes, a new thread will be created to execute the task;

2. When the number of currently running threads is equal to corePoolSize , if a new task
comes, it will be added LinkedBlockingQueue ;

3. LinkedBlockingQueue After the threads in the thread pool complete the task at hand,
they will repeatedly obtain tasks from it in a loop to execute;

FixedThreadPool Using an unbounded queue LinkedBlockingQueue (the queue
capacity is Integer.MAX_VALUE) as the work queue of the thread pool will have the
following effects on the thread pool:

1. When the number of threads in the thread pool reaches corePoolSize , new tasks will
wait in the unbounded queue, so the number of threads in the thread pool will not
exceed corePoolSize ;

Why is it deprecated FixedThreadPool ?

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 25/32

2. When using an unbounded queue, maximumPoolSize will be an invalid parameter, as it
is impossible for the task queue to be full. Therefore, from the created source code, we
can see that FixedThreadPool the created and are set to the same
value. FixedThreadPool corePoolSize maximumPoolSize

3. keepAliveTime Due to 1 and 2, it will be an invalid parameter when using an
unbounded queue ;

4. Running FixedThreadPool (unexecuted shutdown() or shutdownNow()) tasks will
not be rejected, which will cause OOM (memory overflow) when there are too many
tasks.

SingleThreadExecutor It is a thread pool with only one thread. Let's look at the
implementation of SingleThreadExecutor:

SingleThreadExecutor

introduce

 /**
 *返回只有一个线程的线程池
 */
 public static ExecutorService
newSingleThreadExecutor(ThreadFactory threadFactory) {
 return new FinalizableDelegatedExecutorService
 (new ThreadPoolExecutor(1, 1,
 0L, TimeUnit.MILLISECONDS,
 new
LinkedBlockingQueue<Runnable>(),
 threadFactory));
 }

 public static ExecutorService newSingleThreadExecutor() {
 return new FinalizableDelegatedExecutorService
 (new ThreadPoolExecutor(1, 1,
 0L, TimeUnit.MILLISECONDS,
 new
LinkedBlockingQueue<Runnable>()));
 }

java
1
2
3
4
5
6
7
8
9
10

java
1
2
3
4
5
6

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 26/32

From the source code above, we can see that the and SingleThreadExecutor of the newly
created are both set to 1, and the other parameters are the same as
. corePoolSize maximumPoolSize FixedThreadPool

SingleThreadExecutor Schematic diagram of the operation (the picture comes from
"The Art of Java Concurrency Programming"):

The above picture shows :

1. If the number of currently running threads is less than corePoolSize , a new thread is
created to execute the task;

2. After there is a running thread in the current thread pool, add the
task LinkedBlockingQueue

3. LinkedBlockingQueue After the thread finishes executing the current task, it will
repeatedly obtain tasks from it in a loop to execute;

SingleThreadExecutor Like , an unbounded queue with a capacity of is used as the
thread pool's work queue. Using FixedThreadPool an unbounded queue as the thread
pool's work queue has the same impact on the thread pool as . Simply put, it can cause

Introduction to the task execution process

Why is it deprecated SingleThreadExecutor ?

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 27/32

OOM
errors. Integer.MAX_VALUE LinkedBlockingQueue SingleThreadExecutor FixedThre
adPool

CachedThreadPool It is a thread pool that creates new threads as needed. Let's take a look
at CachedThreadPool the implementation of through the source code:

CachedThreadPool The corePoolSize is set to empty (0) and maximumPoolSize is set
to Integer.MAX.VALUE , which means it is unbounded, which means that if the main
thread submits tasks faster than maximumPool the threads in process tasks,
CachedThreadPool new threads will be created continuously. In extreme cases, this will

lead to exhaustion of CPU and memory resources.

CachedThreadPool 's execute() method execution diagram (the picture comes from
"The Art of Java Concurrency Programming"):

CachedThreadPool

introduce

Introduction to the task execution process

 /**
 * 创建一个线程池，根据需要创建新线程，但会在先前构建的线程可用时重用它。
 */
 public static ExecutorService newCachedThreadPool(ThreadFactory
threadFactory) {
 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
 60L, TimeUnit.SECONDS,
 new
SynchronousQueue<Runnable>(),
 threadFactory);
 }

 public static ExecutorService newCachedThreadPool() {
 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
 60L, TimeUnit.SECONDS,
 new
SynchronousQueue<Runnable>());
 }

java
1
2
3
4
5
6
7
8
9

java
1
2
3
4
5

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 28/32

The above picture shows:

1. First, execute SynchronousQueue.offer(Runnable task) Submit Task to the Task
Queue. If maximumPool an idle thread is currently executing
SynchronousQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS) , the main

thread's offer operation poll is successfully paired with the idle thread's operation. The
main thread then hands the task over to the idle thread, execute() completing the
method execution. Otherwise, execute Step 2 below.

2. When the initial maximumPool is empty, or maximumPool there are no idle threads in ,
there will be no thread to execute
SynchronousQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS) . In this case, step

1 will fail, and CachedThreadPool a new thread will be created to execute the task, and
the execute method will be executed.

CachedThreadPool A synchronous queue is used SynchronousQueue , and the number of
threads allowed to be created is Integer.MAX_VALUE , which may create a large number of
threads and cause OOM.

Why is it deprecated CachedThreadPool ?

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 29/32

ScheduledThreadPool Used to run tasks after a given delay or periodically. This is rarely
used in real projects and is not recommended. You only need to have a brief understanding
of it.

ScheduledThreadPool It is created by ScheduledThreadPoolExecutor using
DelayedWorkQueue (delayed blocking queue) as the task queue of the thread pool.

DelayedWorkQueue The internal elements of the queue are not sorted by the time they
were added, but rather by the length of time tasks have been delayed. The internal "heap"
data structure ensures that each task dequeued is the one with the earliest execution time
in the queue. DelayedWorkQueue When the queue is full, it automatically expands to 1/2
of its original capacity, meaning it never blocks and can Integer.MAX_VALUE only create
as many threads as the number of core threads.

ScheduledThreadPoolExecutor Inherited ThreadPoolExecutor , so the creation
ScheduledThreadExecutor is essentially to create a ThreadPoolExecutor thread pool,

but the parameters passed in are different.

Timer sensitive to changes in the system clock, ScheduledThreadPoolExecutor no;

ScheduledThreadPool

introduce

Comparison between ScheduledThreadPoolExecutor and Timer

public static ScheduledExecutorService newScheduledThreadPool(int
corePoolSize) {
 return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
 new DelayedWorkQueue());
}

public class ScheduledThreadPoolExecutor
 extends ThreadPoolExecutor
 implements ScheduledExecutorService

java
1
2
3
4
5
6
7

java
1
2
3

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 30/32

Timer There is only one thread of execution, so long-running tasks can delay other
tasks. ScheduledThreadPoolExecutor Any number of threads can be configured. In
addition, ThreadFactory you can have full control over the threads created if you want
(by providing);
TimerTask A runtime exception thrown in will kill a thread, resulting in a
Timer panic, meaning that scheduled tasks will no longer run.
ScheduledThreadExecutor Not only does catch runtime exceptions, but it also allows

you to handle them if needed (by overriding afterExecute the method
ThreadPoolExecutor). The task that threw the exception will be canceled, but other

tasks will continue to run.

For a detailed introduction to scheduled tasks, see this article: Detailed Explanation of
Java Scheduled Tasks .

This article, Java Thread Pool Best Practices, summarizes some things you should pay
attention to when using thread pools. You can read it before using thread pools in actual
projects.

The Art of Concurrent Programming in Java
Java Scheduler ScheduledExecutorService ScheduledThreadPoolExecutor Example
java.util.concurrent.ScheduledThreadPoolExecutor Example
ThreadPoolExecutor – Java Thread Pool Example

Thread Pool Best Practices

refer to

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 31/32

https://javaguide.cn/system-design/schedule-task.html
https://javaguide.cn/system-design/schedule-task.html
https://javaguide.cn/system-design/schedule-task.html
https://javaguide.cn/java/concurrent/java-thread-pool-best-practices.html
https://javaguide.cn/java/concurrent/java-thread-pool-best-practices.html
https://www.journaldev.com/2340/java-scheduler-scheduledexecutorservice-scheduledthreadpoolexecutor-example
https://www.journaldev.com/2340/java-scheduler-scheduledexecutorservice-scheduledthreadpoolexecutor-example
https://examples.javacodegeeks.com/core-java/util/concurrent/scheduledthreadpoolexecutor/java-util-concurrent-scheduledthreadpoolexecutor-example/
https://examples.javacodegeeks.com/core-java/util/concurrent/scheduledthreadpoolexecutor/java-util-concurrent-scheduledthreadpoolexecutor-example/
https://www.journaldev.com/1069/threadpoolexecutor-java-thread-pool-example-executorservice
https://www.journaldev.com/1069/threadpoolexecutor-java-thread-pool-example-executorservice

Recently Updated2025/4/11 06:23
Contributors: Kou Shuang , wjch , cxyzjp , Jiabin , HTY , shuang.kou , liwenguang , jiayao , guide , LIU ,

zhuhao , vfmh , kaka2634 , error0g , Mr.HangdianGhost , Evan He , Verne.Chung , Li Jianxin , hyl1995 ,
Guide , Mr.Hope , paigeman , WangHuaming111 , smy1999

Copyright © 2025 Guide

9/21/25, 2:19 PM Java Thread Pool Explained | JavaGuide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 32/32

