9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

Java Thread Pool Detailed
Explanation

2 Guide B&® Java €@ JavaConcurrency @ About 8577 words X About 29 minutes

Pooling technology is undoubtedly familiar to everyone. Thread pools, database connection
pools, HTTP connection pools, and more are all applications of this concept. The main
purpose of pooling technology is to reduce the consumption of each resource acquisition
and improve resource utilization.

In this article, I will introduce the basic concepts and core principles of thread pools in
detail.

Thread Pool Introduction

As the name suggests, a thread pool is a resource pool that manages a series of threads. It
provides a way to limit and manage thread resources. Each thread pool also maintains
some basic statistics, such as the number of completed tasks.

Here I borrow some content from the book "The Art of Java Concurrency Programming" to
summarize the benefits of using thread pools:

* Reduce resource consumption . By reusing existing threads, you can reduce the
consumption caused by thread creation and destruction.

e Improve responsiveness . When a task arrives, it can be executed immediately
without waiting for a thread to be created.

e Improve thread manageability . Threads are a scarce resource. If they are created
without limit, they will not only consume system resources but also reduce system
stability. Using a thread pool allows for unified allocation, tuning, and monitoring.

Thread pools are generally used to execute multiple unrelated time-
consuming tasks. Without multithreading, tasks are executed sequentially.
Using a thread pool allows multiple unrelated tasks to be executed
simultaneously.

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 1/32

https://javaguide.cn/article/

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

Introduction to the Executor Framework

Executor The framework was introduced after Java 5. After Java 5, Executor starting
threads through is better than using the method Thread of. start In addition to being
easier to manage and more efficient (implemented with a thread pool to save overhead),
there is another key point: it helps avoid the "this" escape problem.

This escape means that other threads hold a reference to the object before the
constructor returns. Calling methods on objects that have not been fully constructed
may cause confusing errors.

Executor The framework not only includes thread pool management, but also provides
thread factories, queues, and rejection strategies. Executor The framework makes
concurrent programming easier.

Executor The framework structure mainly consists of three parts:
1. Task (Runnable / Callable)

Runnable The interface or Callable interfaces that need to be implemented to
perform the task . Runnable Interfaces or Callable interface implementation classes
can be executed by ThreadPoolExecutor or ScheduledThreadPoolExecutor .

2. Task execution (Executor)

As shown in the figure below, it includes the core interface of the task execution

mechanism Executor and the interface inherited Executor from the interface
ExecutorService . ThreadPoolExecutor The two key classes, and ,
ScheduledThreadPoolExecutor implement ExecutorService the interface.

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 2/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

Executor
A

ExecutorService
A A

(£) = AbstractExecutorService ListeningExecutorService ScheduledExecutorService
: A

ThreadPoolExecutor ForkJoinPool

ScheduledThreadPoolExecutor

Alot of underlying class relationships are mentioned here, but in fact we need to pay more
attention to ThreadPoolExecutor this class, which is used very frequently in our actual
use of thread pools.

Note: By looking at ScheduledThreadPoolExecutor the source code, we find
ScheduledThreadPoolExecutor that actually inherits ThreadPoolExecutor and

implements ScheduledExecutorService , which ScheduledExecutorService in turn

implements ExecutorService , as shown in the class relationship diagram given above.

ThreadPoolExecutor Class Description:

1 //AbstractExecutorServiceXZ¥l TExecutorServicei& java
2 public class ThreadPoolExecutor extends AbstractExecutorService

ScheduledThreadPoolExecutor Class Description:

//ScheduledExecutorServicedfF&ExecutorServicei&Od java
public class ScheduledThreadPoolExecutor
extends ThreadPoolExecutor

A W N

implements ScheduledExecutorService

3. Results of asynchronous calculations (Future)

Future Both interfaces and Future interface implementation classes FutureTask can

"

represent the results of asynchronous computations.

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 3/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

When we submit the implementation class of Runnable interface or
Callable interface ThreadPoolExecutor toor ScheduledThreadPoolExecutor for
execution. (submit() When calling the method, a FutureTask object will be returned)

Executor Framework usage diagram :

Runnable

creat execut
Callable<V> submit
creat
ExecutorService
T submit _
C 45 ThreadPool
N Executor
et Scheduled Thread
retum PoolExecutor
cancel
Future<V=

FutureTask=V=

1. The main thread must first create a task object that implements the Runnable or
Callable interface.
2. Submit the created implementation Runnable / Callable interface object directly
ExecutorService to Execute: ExecutorService.execute (Runnable command))or
you can submit Runnable the object or Callable objectto ExecutorService Execute
(ExecutorService.submit (Runnable task) or ExecutorService.submit
(Callable <T> task)).
3. If executed ExecutorService.submit (.) , ExecutorService it will return an
Future object that implements the interface (we have just mentioned the difference
between the execution execute() method and submit() the method,
submit () which will return an FutureTask %), HF FutureTask implementation
Runnable . We can also create it FutureTask and then directly hand it over
ExecutorService to execution.
4. Finally, the main thread can execute FutureTask.get() methods to wait for the task to
complete. The main thread can also execute FutureTask.cancel (boolean
mayInterruptIfRunning) to cancel the execution of this task. ‘

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

4/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

Introduction to the ThreadPoolExecutor class
(important)

The thread pool implementation class ThreadPoolExecutor is Executor the core class of
the framework.

Thread pool parameter analysis

ThreadPoolExecutor The class provides four constructors. Let's look at the longest one,
and the other three are generated based on this constructor (the other constructors are
basically constructors that give certain default parameters, such as what the default
rejection policy is).

1 /%% java
> *x FATENIRSEEIZ— 9 ThreadPoolExecutor,

3 */

4 public ThreadPoolExecutor(int corePoolSize,//&iEBH LIRS
5 int maximumPoolSize, //&iE AR ARELTEEL
6 long keepAliveTime,//HEBREATFIZOE
v FRHE, RN REGIEFENRKE

3 TimeUnit unit,//BSE)E{

9 BlockingQueue<Runnable> workQueue,//
10 E55BAF, FRMEFHFGFHITESNAG

11 ThreadFactory threadFactory,//%4f T
12 I, FROIERLETE, —ARERIABDRT

13 RejectedExecutionHandler handler//1E4
14 G, RIS I ZMABERITLIERS, Ff10] AE I RIS RAGIE(ES

15) 4

16 if (corePoolSize < 0 ||

17 maximumPoolSize <= 0 ||

18 maximumPoolSize < corePoolSize ||

19 keepAliveTime < 0)

20 throw new IllegalArgumentException();

21 if (workQueue == null || threadFactory == null || handler
22 == null)

23 throw new NullPointerException();

24 this.corePoolSize = corePoolSize;

this.maximumPoolSize = maximumPoolSize;

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

5/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

25 this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;

The following parameters are very important and you will definitely need them later when
using the thread pool! So, be sure to take a small notebook and write them down clearly.

ThreadPoolExecutor The 3 most important parameters are:

e corePoolSize : The maximum number of threads that can run simultaneously when
the task queue has not reached the queue capacity.

e maximumPoolSize : When the number of tasks stored in the task queue reaches the
queue capacity, the number of threads that can currently run simultaneously becomes
the maximum number of threads.

e workQueue : When a new task comes, it will first determine whether the number of
currently running threads reaches the number of core threads. If so, the new task will be
stored in the queue.

ThreadPoolExecutor Other common parameters:

keepAliveTime : When the number of threads in the thread pool is greater

corePoolSize than, if no new tasks are submitted at this time, the threads outside the
core threads will not be destroyed immediately, but will wait until the waiting time
exceeds and keepAliveTime then be recycled and destroyed.

unit : keepAliveTime The time unit of the parameter.

threadFactory :executor is used when creating a new thread.

handler :Rejection strategy (will be introduced in detail later).

The following diagram can help you better understand the relationship between various
parameters in the thread pool (Image source: "Java Performance Tuning Practice"):

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 6/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

%iEith .
r
> e
o
San EreP R TR AT SIMET | BN
SREZAFERIRA<ATIE nkeepAliveTime
HROEE <
y - —»= maximumPoolSize

ThreadPoolExecutor Deny policy definition:

If the number of threads currently running simultaneously reaches the maximum number
of threads and the queue is full of tasks, ThreadPoolExecutor define some strategies:

ThreadPoolExecutor.AbortPolicy : Throw RejectedExecutionException to reject
the processing of new tasks.

* ThreadPoolExecutor.CallerRunsPolicy Calls the execution thread to run the task,
that is, execute runs the task directly in the calling thread. (run) Rejected tasks are
discarded if the executor is shut down. Therefore, this strategy slows down the
submission of new tasks, affecting overall application performance. If your application
can tolerate this delay and you require that all task requests be executed, you can choose
this strategy.

e ThreadPoolExecutor.DiscardPolicy : Do not process new tasks and discard them

directly.

ThreadPoolExecutor.DiscardOldestPolicy : This strategy will discard the oldest
unprocessed task request.

For example:

For example, when Spring creates a thread pool ThreadPoolTaskExecutor directly .

through ThreadPoolExecutor the constructor, if we do not specify
RejectedExecutionHandler arejection strategy to configure the thread pool, the default

rejection strategy is used AbortPolicy . Under this rejection strategy, if the queue is full,

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 7/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

an exception ThreadPoolExecutor will be thrown RejectedExecutionException to
reject new tasks, which means you will lose the processing of this task. If you do not want
to discard tasks, you can use this strategy CallerRunsPolicy .

CallerRunsPolicy Unlike the other strategies, it neither discards tasks nor throws
exceptions. Instead, it returns the task to the caller and uses the caller's thread to execute

the task.
1 public static class CallerRunsPolicy implements java
v RejectedExecutionHandler {
3
4 public CallerRunsPolicy() { }
5
6 public void rejectedExecution(Runnable r,
v ThreadPoolExecutor e) {
3 if (!e.isShutdown()) {
9 // BEEEERT, MAREELPIELERIT
10 r.run();
11 y

Two ways to create a thread pool
In Java, there are two main ways to create a thread pool:

Method 1: ThreadPoolExecutor Create directly through the constructor
(recommended)

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue)
Creates a new ThreadPoolExecutor with the given initial parameters and default thread factory and rejected execution handler.

B E RGBS AN AR L) USRS P TAL B A1) @ — i) ThreadPoolExecutor .

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)
Creates a new ThreadPoolExecutor with the given initial parameters and default thread factory.

i 14 S AT IR S BB L) 8@ — /¥ ThreadPoolExecutor .

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory)
Creates a new ThreadPoolExecutor with the given initial parameters and default rejected execution handler.

2 EFIRIAE SERBR N B FE 4P T AL B A Al — A $TiY ThreadPoolExecutor o

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory, RejectedExecutionHandler handler)

Creates a new ThreadPoolExecutor with the given initial parameters.
1 4 SE BRI EG S8R — /4N ThreadPoolExecutor .

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

8/32

9/21/25,2:19 PM

Java Thread Pool Explained | JavaGuide

This is the most recommended approach because it allows developers to explicitly specify

the core parameters of the thread pool and have more precise control over the running

behavior of the thread pool, thereby avoiding the risk of resource exhaustion.

Method 2: Executors Create through tool class (not recommended for

production environment)

Executors The method for creating a thread pool provided by the tool class is shown in

the following figure:

<

-
4+
NQ

%
%
%
%
%
%
%
&
&
<
<
%

L T

Executors

newFixedThreadPool(int): ExecutorService

newWorkStealingPool(int): ExecutorService

newWorkStealingPool(): ExecutorService

newFixedThreadPool(int, ThreadFactory): ExecutorService
newSingleThreadExecutor(): ExecutorService
newSingleThreadExecutor(ThreadFactory): ExecutorService
newCachedThreadPool(): ExecutorService
newCachedThreadPool(ThreadFactory): ExecutorService
newSingleThreadScheduledExecutor(): ScheduledExecutorService
newSingleThreadScheduledExecutor(ThreadFactory): ScheduledExecutorService

newScheduledThreadPool(int): ScheduledExecutorService

newScheduledThreadPool(int, ThreadFactory): ScheduledExecutorService

Executors It can be seen that various types of thread pools can be created through tool

classes, including:

FixedThreadPool A thread pool with a fixed number of threads. The number of
threads in this thread pool remains constant. When a new task is submitted, it is
immediately executed if there are idle threads in the thread pool. If not, the new task is
temporarily stored in a task queue and processed when a free thread becomes available.

SingleThreadExecutor : A thread pool with only one thread. If more than one task is
submitted to the thread pool, the tasks are stored in a task queue and executed in first-
in, first-out order when a thread becomes idle.

CachedThreadPool A thread pool with adjustable thread counts. The number of
threads in the thread pool is fixed, but if there are idle threads available for reuse, they
will be prioritized. If all threads are busy and a new task is submitted, a new thread ~"
be created to handle the task. After all threads complete their current tasks, they w
returned to the thread pool for reuse.

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

9/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

e ScheduledThreadPool : A thread pool that runs tasks after a given delay or executes
tasks periodically.

The Alibaba Java Development Manual prohibits thread pools from Executors being
created using , but rather through ThreadPoolExecutor the constructor. This approach
allows coders to more clearly understand the thread pool's operating rules and avoid the
risk of resource exhaustion.

Executors The disadvantages of returning the thread pool object are as follows (which
will be described in detail later):

e FixedThreadPool And SingleThreadExecutor : A blocking queue is used
LinkedBlockingQueue , and the maximum length of the task queue is
Integer.MAX_VALUE , which can be regarded as unbounded. A large number of

requests may accumulate, resulting in OOM.

e CachedThreadPool : Using a synchronous queue SynchronousQueue , the number of
threads allowed to be created is Integer.MAX_VALUE . If the number of tasks is too
large and the execution speed is slow, a large number of threads may be created,
resulting in OOM.

e ScheduledThreadPool And SingleThreadScheduledExecutor : The unbounded
delayed blocking queue used DelayedWorkQueue , the maximum length of the task
queue is Integer.MAX_VALUE , a large number of requests may accumulate, resulting in

OOM.

1 public static ExecutorService newFixedThreadPool(int nThreads) { java
5 // LinkedBlockingQueue HIEXIAKEN Integer.MAX_VALUE, JAEERT
3 R

4 return new ThreadPoolExecutor(nThreads, nThreads,0L,

5 TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());

6

v ¥

8

9 public static ExecutorService newSingleThreadExecutor() {

10 // LinkedBlockingQueue BIEKIAKEA Integer.MAX_VALUE, AIAEBERT
11 FHY

12 return new FinalizableDelegatedExecutorService (new

13 ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS, new

14 LinkedBlockingQueue<Runnable>()));

15 .
16 !

17

18 // [%BAF) SynchronousQueue, REBTE, mALELNE Integer.MAX_VALUE®

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

10/32

9/21/25,2:19 PM

19
20
21
22
23
24
25
26
27

Java Thread Pool Explained | JavaGuide

public static ExecutorService newCachedThreadPool() {

return new ThreadPoolExecutor(@, Integer.MAX_VALUE,60L,
TimeUnit.SECONDS,new SynchronousQueue<Runnable>());

// DelayedWorkQueue (ZEiRFEZERATI)
public static ScheduledExecutorService newScheduledThreadPool(int
corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
¥
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, @, NANOSECONDS,
new DelayedWorkQueue());

Summary of commonly used blocking queues in thread

pools

When a new task arrives, it will first determine whether the number of currently running

threads reaches the number of core threads. If so, the new task will be stored in the queue.

Different thread pools will use different blocking queues, which we can analyze in

combination with the built-in thread pool.

e (Unbounded queue) with capacity: Integer.MAX_VALUE and . At most, only the

number of core threads can be created (the number of core threads and the maximum

number of threads are equal), and only one thread can be created (the number of core

threads and the maximum number of threads are both 1). The task queues of both will

never be

full. LinkedBlockingQueue FixedThreadPool SingleThreadExector FixedThreadP

ool SingleThreadExector

e SynchronousQueue (Synchronous Queue): It has no capacity and does not store

elements CachedThreadPool . SynchronousQueue Its purpose is to ensure that if a free
thread is available, it will be used to process the submitted task; otherwise, a new thread

will be created to process the task. In other words, CachedThreadPool the maximum

number of threads is Integer.MAX_VALUE , which can be understood as infinitely .

scalable. This may create a large number of threads, leading to OOM errors.

e DelayedWorkQueue Delayed Blocking Queue: The internal elements of the

ScheduledThreadPool queue are not sorted by the time they were added, but rather by

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

11/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

the length of their delay. The internal "heap" data structure ensures that the task
dequeued is the one with the earliest execution time in the queue. When the queue is
full, it automatically expands to half its original capacity, meaning it never blocks. The
maximum expansion capacity is achievable , so it can only create a maximum of the
number of core

threads. SingleThreadScheduledExecutor DelayedWorkQueue DelayedWorkQueue I
nteger.MAX_VALUE

Analysis of thread pool principles (important)

We have explained Executor the framework and class above. Now let's put it into practice
and review the above content ThreadPoolExecutor by writing a small
Demo. ThreadPoolExecutor

Thread pool sample code

First, create an Runnable implementation class of the interface (of course, it can also be
Callable an interface, we will introduce the difference between the two later.)

MyRunnable. java

1 import java.util.Date; Java
2

3 /%

4 * XE—TEEMNRunnablesk, FEALSHHRMITEES.

5 * @author shuang.kou

6 X

v public class MyRunnable implements Runnable {

8

9 private String command;

10

11 public MyRunnable(String s) {

12 this.command = s;

13 ;

14

15 @0verride

16 public void run() { .
17 System.out.println(Thread.currentThread().getName() + "

18 Start. Time = " + new Date());

19 processCommand () ;

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 12/32

9/21/25,2:19 PM

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

When writing a test program, we use ThreadPoolExecutor the method recommended by

System.out.println(Thread.currentThread().getName() +

End. Time =

s

Java Thread Pool Explained | JavaGuide

+ new Date());

private void processCommand() {

try

{

Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();

@Override
public String toString() {
return this.command;

Alibaba to create a thread pool using constructor custom parameters.

ThreadPoolExecutorDemo. java

O 0 N O Ul p W N B

e ol el el
© 0 NO U A WN RS

import java.util.concurrent.ArrayBlockingQueue; Java

import java.util.concurrent.ThreadPoolExecutor;

import java.util.concurrent.TimeUnit;

public class ThreadPoolExecutorDemo {

private
private
private
private

static
static
static
static

final
final
final
final

int CORE_POOL_SIZE = 5;
int MAX_POOL_SIZE = 10;
int QUEUE_CAPACITY = 100;
Long KEEP_ALIVE_TIME = 1L;

public static void main(String[] args) {

//1ERREBE#EEFNEIRLEE A

/ /B3 ThreadPoolExecutoridi&E R EE X SELi2
ThreadPoolExecutor executor = new ThreadPoolExecutor(
CORE_POOL_SIZE,

MAX_POOL_SIZE, ‘
KEEP_ALIVE_TIME,

TimeUnit.SECONDS,

new ArrayBlockingQueue<>(QUEUE_CAPACITY),

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

13/32

9/21/25,2:19 PM

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Java Thread Pool Explained | JavaGuide

new ThreadPoolExecutor.CallerRunsPolicy());

for (int 1 = 0; i < 10; i++) {
//81EZWorkerThreadX% (WorkerThreadZ:3LI TRunnable 3Z[0)
Runnable worker = new MyRunnable("" + i);
//#1T7Runnable
executor.execute(worker);

}

YE-I57 >

executor.shutdown();

while (!executor.isTerminated()) {

¥
System.out.println("Finished all threads");

You can see that the code above specifies:

e corePoolSize : The number of core threads is 5.

e maximumPoolSize : Maximum number of threads: 10

e keepAliveTime : The waiting time is 1L.

e unit : The unit of waiting time is TimeUnit.SECONDS.
e workQueue :

e handler :Rejection strategy is CallerRunsPolicy .

The task queue is ArrayBlockingQueue and the capacity is 100;

Output structure :

O 0o N O U1l p W N P

e e el
Ul WN RS

pool-1-thread-3
pool-1-thread-5
pool-1-thread-2
pool-1-thread-1
pool-1-thread-4
pool-1-thread-3
pool-1-thread-4
pool-1-thread-1
pool-1-thread-5
pool-1-thread-1
pool-1-thread-2
pool-1-thread-5
pool-1-thread-4
pool-1-thread-3
pool-1-thread-2
pool-1-thread-1

Start. Time = Sun Apr 12 11:14:37 CST 2020 plain
Start. Time = Sun Apr 12 11:14:37 CST 2020

Start. Time = Sun Apr 12 11:14:37 CST 2020

Start. Time = Sun Apr 12 11:14:37 CST 2020

Start. Time = Sun Apr 12 11:14:37 CST 2020

End. Time = Sun Apr 12 11:14:42 CST 2020

End. Time = Sun Apr 12 11:14:42 CST 2020

End. Time = Sun Apr 12 11:14:42 CST 2020

End. Time = Sun Apr 12 11:14:42 CST 2020

Start. Time = Sun Apr 12 11:14:42 CST 2020

End. Time = Sun Apr 12 11:14:42 CST 2020

Start. Time = Sun Apr 12 11:14:42 CST 2020

Start. Time = Sun Apr 12 11:14:42 CST 2020 .
Start. Time = Sun Apr 12 11:14:42 CST 2020

Start. Time = Sun Apr 12 11:14:42 CST 2020

End. Time = Sun Apr 12 11:14:47 CST 2020

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

14/32

9/21/25,2:19 PM

16
17
18
19
20
21

Java Thread Pool Explained | JavaGuide

pool-1-thread-4 End. Time = Sun Apr 12 11:14:47 CST 2020
pool-1-thread-5 End. Time = Sun Apr 12 11:14:47 CST 2020
pool-1-thread-3 End. Time = Sun Apr 12 11:14:47 CST 2020
pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020
Finished all threads // ESE2ENITZ T A SBLRE, AN
executor.isTerminated () #I#rAtrue T A aBktwhilef@iF, HHENHAR
shutdown() 7iEE, HEMBERRNESTHREIREN true

Analysis of thread pool principles

From the output of the previous code, we can see that the thread pool will first

execute 5 tasks. Then, when these tasks are completed, it will pick up new

tasks to execute. You can first analyze what is going on based on the above explanation.

(Think about it for a while.)

Now, let's analyze the above output to briefly analyze the principle of thread pool.

In order to understand the principle of thread pool, we need to first analyze execute the

method. In the sample code, we use executor.execute(worker) to submit a task to the

thread pool.

This method is very important. Let's take a look at its source code:

© o N O U1l p W N P

el ol e e el e
© 0N Ul AN WNPRPS

// FREREBREITIRE (runState) FLBEBABRERENEE java
(workerCount)

private final AtomicInteger ctl = new
AtomicInteger(ct10f(RUNNING, 0));

private static int workerCountOf(int c) {
return c¢ & CAPACITY;

b

/ /1E55BAT

private final BlockingQueue<Runnable> workQueue;

public void execute(Runnable command) {
// MRESFnulLl, NIMERE,
if (command == null)
throw new NullPointerException();
// ctl RRENEGELIFN—ERSER .
int ¢ = ctl.get();

// TE=ZPKRE 3 5 #&F

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

15/32

9/21/25,2:19 PM

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Java Thread Pool Explained | JavaGuide

// 1. BRI ESREEEPITHRESHERS /)T corePoolSize
// WR/NFHIIE, @idaddWorker(command, true)FiZ— 1&g, FHIGE
% (command) R/INENZ&REF: AR, Bohz&EMMRITES.
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 2. NRERHITHESHEATET corePoolSize MIEHMEMAEERX
B, RIPABIEMINEEZERN,
// BT isRunning AERFIBTEEMIATS, &iEithbT RUNNING REHE
FABURT BASDAESS, ZESASEIMNEE
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// BRGNS, NREFFIRESTRE RUNNING REMBEMT
ZRNFIPREIRES, HEHFIERERTSEINITRE., BNMITIELLIRE.
if (!isRunning(recheck) && remove(command))
reject(command);
// MRIEB TIELEHENO, FEIE—EREHNIT.
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
//3. #@daddWorker(command, false)fi@— 12, HIFES
(command) RINENRZL&ZF; ARG, BINZEREMMRITES.
// BN false RFIBINLTZRHIETHRILIZHE S DT maxPoolSize
//%0%RaddWorker(command, false)HiThM, M@dreject () HiTHEME
RHELLRIRIIAS.
else if ('!addWorker(command, false))
reject(command);

Here is a brief analysis of the entire process (the entire logic is simplified for easy

understanding):

1. If the number of currently running threads is less than the number of core threads, a

new thread will be created to execute the task.

2. If the number of currently running threads is equal to or greater than the number of

core threads, but less than the maximum number of threads, then the task is placed in

the task queue and waits for execution.
3. If the task fails to be put into the task queue (the task queue is full), but the numbe ‘

currently running threads is less than the maximum number of threads, a new thread is

created to execute the task.

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

16/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

4. If the number of currently running threads is equal to the maximum number of threads,
creating a new thread will cause the currently running threads to exceed the maximum
number of threads, then the current task will be rejected and the rejection strategy will
call RejectedExecutionHandler.rejectedExecution() the method.

LR FiFIH mAHE
e B sEpmEr TYES® mmpims VES— o, ——YES—» IRIBIEIE AR AL E
"f :'ii] Hllu

TABAF

In execute the method, call addworker the method multiple times. addWorker This
method is mainly used to create a new worker thread. If it returns true, it means that the
worker thread is created and started successfully. Otherwise, it returns false.

. /] 2R, FRBELE java
2 private final ReentrantlLock mainLock = new ReentrantLock();
3 // BRIREEBNRAKX), REESEEESmainLockiaEE N sEIAELES
4 private int largestPoolSize;
5 /] TEEREES, FRERUPREN (FIRMN) TELRE, REEHE2E8
6 mainLockiIETi T BETAEILtER S
v private final HashSet<Worker> workers = new HashSet<>();
8 / 3RBRERR MRS
9 private static int runStateOf(int c) { return c &
10 ~CAPACITY; }
1 / THREABRIRSRER Running
12 private static boolean isRunning(int c) {
13 return ¢ < SHUTDOWN;
14 y
15
16
17 /K
18 * RINFTA TIE4IZE L2
19 * @param firstTask EHT
20 * @param coreZENtruefIERRNMEBEBMNELRK), NfalselEAL%TE]
21 mRAKRN
22 * @return RINKINFNIREtrueZNRE false
23 */
24 private boolean addWorker(Runnable firstTask, boolean core) 1
25 retry:
for (;5) {

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 17/32

9/21/25,2:19 PM

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Java Thread Pool Explained | JavaGuide

/ /X E) B RENEFE AR S
int ¢ = ctl.get();
int rs = runStateOf(c);

// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
I (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;

for (;;) {
/ 3REVEFE M TEMAIZMEE
int wc = workerCountOf(c);
// coreZ#NfalsefIERANIIF T, &I ARNER

maximumPoolSize

inner loop

by

if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;

//RFEIEBworkcountAEEM1

if (compareAndIncrementWorkerCount(c))
break retry;

// WMREFRRPASRZ T ERINIT LR RIE

c = ctl.get();

if (runStateOf(c) != rs)
continue retry;

// else CAS failed due to workerCount change; retry

// WRETELERE/EoNAIN
boolean workerStarted = false;
// FRCLIE&TZR S AIEMIN
boolean workerAdded = false;
Worker w = null;

try {

w = new Worker(firstTask);
final Thread t = w.thread;

if (t != null) { ‘

// DN
final ReentrantLock mainLock = this.mainlLock;
mainLock. lock();

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

18/32

9/21/25,2:19 PM

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100

Java Thread Pool Explained | JavaGuide

try {
/ 1 IRERG R MRS
int rs = runStateOf(ctl.get());
//rs < SHUTDOWN #NRZFEMIRSUAIRUNNING, 7 HLL 2
FRSERFENIE, M8 LELERNETELEES
//(rs=SHUTDOWN && firstTask == null) iR &E IR
FSTOP, thii2RUNNINGELZESHUTDOWNIAZS T, EIRMENRIESEFIfirstTasks
null, MEERNE TIELEESHSIFHOWorker
// firstTask == nulUERERFEZREMARITES
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is
startable
throw new
IllegalThreadStateException();
workers.add(w);
//BRER LELRENRATE
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
// TFEERE BRI
workerAdded = true;
}
} finally {
// FEREL
mainLock.unlock();
}
/777 MRBEINARINLIELRE, NiEAWorke riEBRILLFESEBItAY
Thread#start() A AN ELAILIZH
if (workerAdded) {
t.start();
/// FRCETRBEIRIN

workerStarted = true;

b
} finally {
// EREMMRN, FTEMILELZPREIRTNAIWorker
if (! workerStarted)
addwWorkerFailed(w);

} u

return workerStarted;

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html

19/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

For more information about thread pool source code analysis, please refer to this article:
Hard-core dry goods: 4W words from the source code to analyze the implementation

principle of JUC thread pool ThreadPoolExecutor

Now, let's go back to the example code. Shouldn't it be easy to understand its principle
now?

If you don’t understand, it doesn’t matter, you can take a look at my analysis:

We simulated 10 tasks in our code, configured the number of core threads to be 5 and
the waiting queue capacity to be 100. Therefore, only 5 tasks can be executed
simultaneously at any one time, and the remaining 5 tasks are placed in the waiting
queue. If any of the current 5 tasks is completed, the thread pool will pick up a new task
to execute.

Several common comparisons

Runnable vs Callable

Runnable While interfaces have existed since Java 1.0 but Callable were introduced in
Java 1.5 to handle Runnable unsupported use cases, Runnable they don't return results
or throw checked exceptions. However, Callable interfaces can. Therefore, if a task
doesn't need to return results or throw exceptions, it's recommended to use

Runnable interfaces; this will result in cleaner code.

The tool class Executors can convert Runnable the objectinto Callable the object. (
Executors.callable(Runnable task) or Executors.callable(Runnable task,
Object result)).

Runnable. java

public abstract void run();

1 @FunctionalInterface Java
v public interface Runnable {

3 /%%

4 * WERENIT, RBEERDELITENEEE

5 */

6

14

Callable.java

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 20/32

https://www.throwx.cn/2020/08/23/java-concurrency-thread-pool-executor/
https://www.throwx.cn/2020/08/23/java-concurrency-thread-pool-executor/
https://www.throwx.cn/2020/08/23/java-concurrency-thread-pool-executor/

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

@FunctionalInterface java
public interface Callable<V> {

/%%

* ITEER, WEXEXFMEMEZFE.

* @return ITEEHNEG

* @throws MIRTEITEER, IMEFE

*/

V call() throws Exception;

O 0 N O U1l p W N PP

execute() vs submit()

execute() There submit() are two ways to submit tasks to the thread pool, with some

differences:

e Return Value: execute() This method is used to submit tasks that do not require a
return value. It is typically used to execute Runnable tasks, where it is impossible to
determine whether the task was successfully executed by the thread pool. The
__register___ submit() method is used to submit tasks that require a return value. You
can submit either __register__ Runnable or Callable __register_ tasks. This

submit () method returns a __register___ object, which can be used to determine the
success of the task and obtain the task's return value. (This method blocks the current
thread until the task completes and has a timeout period; if the task is not completed
within the __ register___ timeout, an error message will be thrown
.) Future Future get() get (long timeout, TimeUnit unit)

timeout java.util.concurrent.TimeoutException

e Exception handling : submit() When using the method, you can use Future the
object to handle exceptions thrown during task execution; when using execute() the
method, exception handling needs to be handled by custom (setting objects to handle
exceptions ThreadFactory when the thread factory creates a thread) or the method
of UncaughtExceptionHandler ThreadPoolExecutor afterExecute()

Example 1: Using get() a method to get the return value.

// XBAOERTERER, #HEFER ThreadPoolExecutor' #i&E7 AL fgava
e
ExecutorService executorService = Executors.newFixedThreadPool(3);

Future<String> submit = executorService.submit(() —> {

try {
Thread.sleep(5000L);

~NoO U WN

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 21/32

9/21/25,2:19 PM

10
11
12
13
14
15

Output:

Java Thread Pool Explained | JavaGuide

} catch (InterruptedException e) {
e.printStackTrace();

s

return "abc'"';

3
String s = submit.get();

System.out.println(s);
executorService.shutdown();

abc plain

Example 2: Using get (long timeout, TimeUnit unit) a method to get the return

value.

1 ExecutorService executorService = Executors.newFixedThreadPool(3)ava

2

3 Future<String> submit = executorService.submit(() —> {

4 try {

5 Thread.sleep(5000L);

6 } catch (InterruptedException e) {

v e.printStackTrace();

8 b

9 return "abc";

10 3

11

12 String s = submit.get(3, TimeUnit.SECONDS);

13 System.out.println(s);

14 executorService.shutdown();
Output:

Exception in thread "main" java.util.concurrent.TimeoutExceptionplain
at java.util.concurrent.FutureTask.get(FutureTask.java:205)

shutdown() VS shutdownNow() ‘

e shutdown () : Close the thread pool, and the state of the thread pool becomes

SHUTDOWN . The thread pool no longer accepts new tasks, but the tasks in the queue

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 22/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

must be completed.
e shutdownNow () : Close the thread pool, and the thread pool status changes to STOP .
The thread pool terminates the currently running task, stops processing queued tasks,

and returns a list of tasks waiting to be executed.

isTerminated() VS isShutdown()

e isShutDown When the method is called shutdown() , it returns true.
e isTerminated When the method is called shutdown() and all submitted tasks are

completed, it returns true

Several common built-in thread pools

FixedThreadPool

introduce

FixedThreadPool It is called a thread pool that can reuse a fixed number of threads.
Executors Let's take a look at the relevant implementation through the relevant source
code in the class:

/%% java

*x BliEE— A EAEEHNELENEIED
*/
public static ExecutorService newFixedThreadPool(int nThreads,
ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new

O 0 N O U1l p W N P

LinkedBlockingQueue<Runnable>(),
threadFactory);

There is another FixedThreadPool implementation method, which is similar to the

above, so I will not elaborate on it here:

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 23/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

public static ExecutorService newFixedThreadPool(int nThreadgjva

return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,

new

u p W N P

LinkedBlockingQueue<Runnable>());

by

From the source code above, we can see that the newly created FixedThreadPool and
corePoolSize are maximumPoolSize setto nThreads , and this nThreads parameter is
passed by ourselves when we use it.

Even if maximumPoolSize the value of is corePoolSize greater than , at most

corePoolSize threads will be created. This is because FixedThreadPool uses an
unbounded queue with a capacity Integer.MAX_VALUE of , which will never be
full. LinkedBlockingQueue

Introduction to the task execution process

FixedThreadPool Method execute() running diagram (the picture comes from "The Art
of Java Concurrency Programming"):

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 24/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

LinkedBlockingQueue<Runnable>

— @ ®

1
3 poli()
2 take()
corePool

execute() | l » LR

&

The above picture shows:

1. If the number of currently running threads is less than corePoolSize , if a new task
comes, a new thread will be created to execute the task;
2. When the number of currently running threads is equal to corePoolSize , if a new task

comes, it will be added LinkedBlockingQueue ;
3. LinkedBlockingQueue After the threads in the thread pool complete the task at hand,

they will repeatedly obtain tasks from it in a loop to execute;

Why is it deprecated FixedThreadPool ?

FixedThreadPool Using an unbounded queue LinkedBlockingQueue (the queue
capacity is Integer.MAX_VALUE) as the work queue of the thread pool will have the
following effects on the thread pool:

1. When the number of threads in the thread pool reaches corePoolSize , new tasks !
wait in the unbounded queue, so the number of threads in the thread pool will not

exceed corePoolSize ;

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 25/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

2. When using an unbounded queue, maximumPoolSize will be an invalid parameter, as it
is impossible for the task queue to be full. Therefore, from the created source code, we
can see that FixedThreadPool the created and are set to the same
value. FixedThreadPool corePoolSize maximumPoolSize

3. keepAliveTime Due to 1 and 2, it will be an invalid parameter when using an
unbounded queue ;

4. Running FixedThreadPool (unexecuted shutdown() or shutdownNow()) tasks will
not be rejected, which will cause OOM (memory overflow) when there are too many
tasks.

SingleThread Executor

introduce

SingleThreadExecutor Itis a thread pool with only one thread. Let's look at the
implementation of SingleThread Executor:

1 /%% java
5 *REIRBE— M EHZNEE)
3 */
4 public static ExecutorService
5 newSingleThreadExecutor(ThreadFactory threadFactory) {
6 return new FinalizableDelegatedExecutorService
v (new ThreadPoolExecutor(1, 1,
8 oL, TimeUnit.MILLISECONDS,
9 new
10 LinkedBlockingQueue<Runnable>(),
threadFactory));

b
1 public static ExecutorService newSingleThreadExecutor() { java
2 return new FinalizableDelegatedExecutorService
3 (new ThreadPoolExecutor(1, 1,
4 OL, TimeUnit.MILLISECONDS,
5 new
6 LinkedBlockingQueue<Runnable>()));

}

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 26/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

From the source code above, we can see that the and SingleThreadExecutor of the newly
created are both set to 1, and the other parameters are the same as
. corePoolSize maximumPoolSize FixedThreadPool

Introduction to the task execution process

SingleThreadExecutor Schematic diagram of the operation (the picture comes from

"The Art of Java Concurrency Programming"):

LinkedBlockingQueue<Runnable>

— | @@

poll()

]
el

take()

corePpol

—» &R

—

@ execute()

The above picture shows :

1. If the number of currently running threads is less than corePoolSize , a new thread is

created to execute the task;
2. After there is a running thread in the current thread pool, add the

task LinkedBlockingQueue
3. LinkedBlockingQueue After the thread finishes executing the current task, it will

repeatedly obtain tasks from it in a loop to execute;

Why is it deprecated SingleThreadExecutor ?

SingleThreadExecutor Like, an unbounded queue with a capacity of is used as the .
thread pool's work queue. Using FixedThreadPool an unbounded queue as the thread
pool's work queue has the same impact on the thread pool as . Simply put, it can cause

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 27/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

OOM
errors. Integer.MAX_VALUE LinkedBlockingQueue SingleThreadExecutor FixedThre
adPool

CachedThreadPool

introduce

CachedThreadPool It is a thread pool that creates new threads as needed. Let's take a look
at CachedThreadPool the implementation of through the source code:

VESS java
; * BlE— &R, RIEREAIEZMARE, EERIEENERETTANERE.
3 */
4 public static ExecutorService newCachedThreadPool(ThreadFactory
5 threadFactory) {
6 return new ThreadPoolExecutor(@, Integer.MAX_VALUE,
7 60L, TimeUnit.SECONDS,
8 new
9 SynchronousQueue<Runnable>(),

threadFactory);

+
1 public static ExecutorService newCachedThreadPool() { java
2 return new ThreadPoolExecutor(@, Integer.MAX_VALUE,
3 60L, TimeUnit.SECONDS,
4 new
5 SynchronousQueue<Runnable>());

by

CachedThreadPool The corePoolSize is set to empty (0) and maximumPoolSize is set
to Integer.MAX.VALUE , which means it is unbounded, which means that if the main
thread submits tasks faster than maximumPool the threads in process tasks,

CachedThreadPool new threads will be created continuously. In extreme cases, this will
lead to exhaustion of CPU and memory resources.

Introduction to the task execution process .

CachedThreadPool 's execute() method execution diagram (the picture comes from
"The Art of Java Concurrency Programming"):

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 28/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

SyrchronousQueue<Runnable>

>

2 Tpullt keepAliveTime,
[:offer(Runnable task) . TimeUnit NANOSECONDS)

maximuniPool

corePoolfly ¥
execute() I »

El:

2t

The above picture shows:

1. First, execute SynchronousQueue.offer(Runnable task) Submit Task to the Task
Queue. If maximumPool an idle thread is currently executing
SynchronousQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) , the main
thread's offer operation poll is successfully paired with the idle thread's operation. The
main thread then hands the task over to the idle thread, execute() completing the
method execution. Otherwise, execute Step 2 below.
2. When the initial maximumPool is empty, or maximumPool there are no idle threads in ,
there will be no thread to execute
SynchronousQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) . In this case, step
1 will fail, and CachedThreadPool a new thread will be created to execute the task, and

the execute method will be executed.

Why is it deprecated CachedThreadPool ?

CachedThreadPool A synchronous queue is used SynchronousQueue , and the number of
threads allowed to be created is Integer.MAX_VALUE , which may create a large number of
threads and cause OOM. .

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 29/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

ScheduledThreadPool

introduce

ScheduledThreadPool Used to run tasks after a given delay or periodically. This is rarely
used in real projects and is not recommended. You only need to have a brief understanding

of it.
1 public static ScheduledExecutorService newScheduledThreadPool(intiava
5 corePoolSize) {
3 return new ScheduledThreadPoolExecutor(corePoolSize);
4 ¥
5 public ScheduledThreadPoolExecutor(int corePoolSize) {
6 super(corePoolSize, Integer.MAX_VALUE, @, NANOSECONDS,
2 new DelayedWorkQueue());

ScheduledThreadPool It is created by ScheduledThreadPoolExecutor using
DelayedwWorkQueue (delayed blocking queue) as the task queue of the thread pool.

DelayedWorkQueue The internal elements of the queue are not sorted by the time they
were added, but rather by the length of time tasks have been delayed. The internal "heap"
data structure ensures that each task dequeued is the one with the earliest execution time
in the queue. DelayedWorkQueue When the queue is full, it automatically expands to 1/2
of its original capacity, meaning it never blocks and can Integer.MAX_VALUE only create
as many threads as the number of core threads.

ScheduledThreadPoolExecutor Inherited ThreadPoolExecutor , so the creation
ScheduledThreadExecutor is essentially to create a ThreadPoolExecutor thread pool,
but the parameters passed in are different.

public class ScheduledThreadPoolExecutor java
extends ThreadPoolExecutor
3 implements ScheduledExecutorService

Comparison between ScheduledThreadPoolExecutor and Timer

e Timer sensitive to changes in the system clock, ScheduledThreadPoolExecutor no;

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 30/32

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

e Timer There is only one thread of execution, so long-running tasks can delay other
tasks. ScheduledThreadPoolExecutor Any number of threads can be configured. In
addition, ThreadFactory you can have full control over the threads created if you want
(by providing);

e TimerTask A runtime exception thrown in will kill a thread, resulting in a

Timer panic, meaning that scheduled tasks will no longer run.

ScheduledThreadExecutor Not only does catch runtime exceptions, but it also allows
you to handle them if needed (by overriding afterExecute the method

ThreadPoolExecutor). The task that threw the exception will be canceled, but other
tasks will continue to run.

For a detailed introduction to scheduled tasks, see this article: Detailed Explanation of
Java Scheduled Tasks

Thread Pool Best Practices

This article, Java Thread Pool Best Practices, summarizes some things you should pay

attention to when using thread pools. You can read it before using thread pools in actual
projects.

refer to

The Art of Concurrent Programming in Java

Java Scheduler ScheduledExecutorService ScheduledThreadPoolExecutor Example

java.util.concurrent.ScheduledThread PoolExecutor Example

ThreadPoolExecutor — Java Thread Pool Example

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 31/32

https://javaguide.cn/system-design/schedule-task.html
https://javaguide.cn/system-design/schedule-task.html
https://javaguide.cn/system-design/schedule-task.html
https://javaguide.cn/java/concurrent/java-thread-pool-best-practices.html
https://javaguide.cn/java/concurrent/java-thread-pool-best-practices.html
https://www.journaldev.com/2340/java-scheduler-scheduledexecutorservice-scheduledthreadpoolexecutor-example
https://www.journaldev.com/2340/java-scheduler-scheduledexecutorservice-scheduledthreadpoolexecutor-example
https://examples.javacodegeeks.com/core-java/util/concurrent/scheduledthreadpoolexecutor/java-util-concurrent-scheduledthreadpoolexecutor-example/
https://examples.javacodegeeks.com/core-java/util/concurrent/scheduledthreadpoolexecutor/java-util-concurrent-scheduledthreadpoolexecutor-example/
https://www.journaldev.com/1069/threadpoolexecutor-java-thread-pool-example-executorservice
https://www.journaldev.com/1069/threadpoolexecutor-java-thread-pool-example-executorservice

9/21/25,2:19 PM Java Thread Pool Explained | JavaGuide

JavaGuideEA RS

(g8 FKJavaGuide)
1. 2RBEREE “PDF”RIER LIPDFE R F 1
2, PRESEAESE “FIRE" KW JavaR 3] BERHIR
3. KREEEEE“ARFRAAJavaFFiFMBESE
4, AREREESE“/\RI” K Javalid RE+EE

Recently Updated2025/4/11 06:23

Contributors: Kou Shuang , wjch , cxyzjp , Jiabin , HTY , shuang.kou , liwenguang , jiayao , guide , LIU,
zhuhao , vfmh , kaka2634 , errorog , Mr.HangdianGhost , Evan He , Verne.Chung , Li Jianxin , hyl1995 ,
Guide , Mr.Hope , paigeman , WangHuaming111 , smy1999

Copyright © 2025 Guide

https://javaguide.cn/java/concurrent/java-thread-pool-summary.html 32/32

