
1. Easy to learn (simple syntax, easy to get started);
2. Object-oriented (encapsulation, inheritance, polymorphism);
3. Platform independence (Java virtual machine achieves platform independence);
4. Support for multithreading (C++ language does not have a built-in multithreading

mechanism, so it is necessary to call the multithreading function of the operating system
to perform multithreaded programming, while Java language provides multithreading
support);

5. Reliability (with exception handling and automatic memory management mechanisms);
6. Security (the Java language itself is designed to provide multiple security protection

mechanisms such as access rights modifiers and restrictions on direct program access to
operating system resources);

7. Efficiency (through optimization technologies such as the Just In Time compiler, the
Java language has very good operating efficiency);

8. Supports network programming and is very convenient;
9. Compilation and interpretation coexist;

10. …

Interview special edition : Friends who are preparing for Java interviews can consider
the interview special edition: "Java Interview Guide" (very high quality, specially
designed for interviews, best used with JavaGuide).
Knowledge Planet : Technical Column/One-on-one Questions/Resume
Modification/Job Hunting Guide/Interview Check-in/Irregular Benefits, welcome to join
the JavaGuide official Knowledge Planet .

This is a small advertisement that may be useful to you

Basic concepts and common sense

What are the characteristics of the Java language?

Summary of Common Java Basic
Interview Questions (Part 1)

Guide Java About 13913 words About 46 minutesJava Basics

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 1/41

https://javaguide.cn/zhuanlan/java-mian-shi-zhi-bei.html
https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/article/

🐛 Fix (see: issue#544) : Starting with C++11 (in 2011), C++ introduced a
multithreading library, which can be used to create threads on Windows, Linux, and
macOS std::thread . std::async Reference link:
http://www.cplusplus.com/reference/thread/thread/?kw=thread

🌈 Expand a little:

The slogan "Write Once, Run Anywhere" is a true classic, having endured for years! Even
today, many people still believe that Java's cross-platform nature is its greatest strength. In
reality, cross-platform is no longer Java's biggest selling point, nor are the various new
JDK features. Virtualization technology is now highly mature; for example, Docker makes
cross-platform deployment easy. In my opinion, Java's powerful ecosystem is truly its most
important selling point!

Java SE (Java Platform, Standard Edition): The Java Platform, Standard Edition, is the
foundation of the Java programming language. It includes core components such as the
core class libraries and virtual machine that support the development and execution of
Java applications. Java SE can be used to build desktop applications or simple server
applications.
Java EE (Java Platform, Enterprise Edition): Built on Java SE, Java Platform,
Enterprise Edition includes standards and specifications that support enterprise-level
application development and deployment (such as Servlets, JSP, EJB, JDBC, JPA, JTA,
JavaMail, and JMS). Java EE can be used to build distributed, portable, robust, scalable,
and secure server-side Java applications, such as web applications.

Simply put, Java SE is the basic version of Java, and Java EE is the advanced version of
Java. Java SE is more suitable for developing desktop applications or simple server ap‐
plications, while Java EE is more suitable for developing complex enterprise applications
or web applications.

In addition to Java SE and Java EE, there's also Java ME (Java Platform, Micro Edition).
Java ME is a micro version of Java, primarily used for developing applications for embed‐
ded consumer electronics devices such as mobile phones, PDAs, set-top boxes, refrigera‐
tors, and air conditioners. Java ME isn't a major concern; just knowing about it is helpful;
it's no longer used.

Java SE vs Java EE

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 2/41

https://github.com/Snailclimb/JavaGuide/issues/544
https://github.com/Snailclimb/JavaGuide/issues/544
http://www.cplusplus.com/reference/thread/thread/?kw=thread
http://www.cplusplus.com/reference/thread/thread/?kw=thread

The Java Virtual Machine (JVM) is a virtual machine that runs Java bytecode. JVMs have
specific implementations for different operating systems (Windows, Linux, and macOS).
The goal is to produce the same results using the same bytecode. The bytecode and the dif‐
ferent JVM implementations are key to the Java language's "compile once, run anywhere"
philosophy.

As shown in the figure below, different programming languages ​​(Java, Groovy, Kotlin,
JRuby, Clojure, etc.) are compiled into files through their respective compilers
.class and ultimately run on different platforms (Windows, Mac, Linux) through the

JVM.

There's more than just one JVM! Any company, organization, or individual
can develop their own proprietary JVM, as long as it meets the JVM specifica‐
tion. In other words, the HotSpot VM we commonly encounter is just one implementation
of the JVM specification.

⭐️JVM vs JDK vs JRE

JVM

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 3/41

 HotSpot VM J9 VM Zing VM JRockit VM JVM
 JVM Comparison of Java virtual machines

 Java SE Specifications JDK JVM

JDK Java Development Kit Java
 Java JRE Java Runtime Environment javac

 javadoc jdb jconsole javap

JRE Java

1. JVM : Java

JDK JRE

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 4/41

https://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines
https://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/javase/specs/index.html

2. Java Class Library API I/O

JRE Java JDK JRE
 Java

 Java Java API JDK Java
 JSP Servlet JDK Java

 Java JDK

 JDK JRE JVM

 JDK 9 JDK JRE
JDK 94 + jlink (Java 9

 Java) JDK
11 Oracle JRE

 Java 9

JDK 94 Java jlink
 JDK

Java

 jlink runtime
 JRE

 Java Java

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 5/41

http://openjdk.java.net/jeps/282
http://openjdk.java.net/jeps/282
https://javaguide.cn/java/new-features/java9.html
https://javaguide.cn/java/new-features/java9.html

 Java JVM .class
Java

 Java
 C C++ Rust Go

Java

Java

 .class-> JVM

() JIT Just
in Time Compilation JIT JIT

 Java Java

🌈

 | Java -
 -

⭐️ ? ?

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 6/41

https://tech.meituan.com/2020/10/22/java-jit-practice-in-meituan.html
https://tech.meituan.com/2020/10/22/java-jit-practice-in-meituan.html
https://mp.weixin.qq.com/s/4haTyXUmh8m-dBQaEzwDJw
https://mp.weixin.qq.com/s/4haTyXUmh8m-dBQaEzwDJw

HotSpot (Lazy Evaluation)
 JIT JVM

JDK JRE JVM JIT

 JVM

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 7/41

C C++ Go Rust

⭐️ Java “ ”

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 8/41

https://zh.wikipedia.org/wiki/%E7%B7%A8%E8%AD%AF%E8%AA%9E%E8%A8%80
https://zh.wikipedia.org/wiki/%E7%B7%A8%E8%AD%AF%E8%AA%9E%E8%A8%80
https://zh.wikipedia.org/wiki/%E7%B7%A8%E8%AD%AF%E5%99%A8
https://zh.wikipedia.org/wiki/%E7%B7%A8%E8%AD%AF%E5%99%A8

interpret

Python JavaScript PHP

Java LLVM

 | Java

 Java “ ”

 Java Java
 Java

.class Java

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 9/41

https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%AD%AF%E8%AA%9E%E8%A8%80
https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%AD%AF%E8%AA%9E%E8%A8%80
https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%AD%AF%E5%99%A8
https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%AD%AF%E5%99%A8
https://zh.wikipedia.org/wiki/%E5%8D%B3%E6%99%82%E7%B7%A8%E8%AD%AF
https://zh.wikipedia.org/wiki/%E5%8D%B3%E6%99%82%E7%B7%A8%E8%AD%AF
https://zh.wikipedia.org/wiki/%E5%AD%97%E8%8A%82%E7%A0%81
https://zh.wikipedia.org/wiki/%E5%AD%97%E8%8A%82%E7%A0%81
https://zh.wikipedia.org/wiki/Java
https://zh.wikipedia.org/wiki/Java
https://zh.wikipedia.org/wiki/LLVM
https://zh.wikipedia.org/wiki/LLVM
https://tech.meituan.com/2020/10/22/java-jit-practice-in-meituan.html
https://tech.meituan.com/2020/10/22/java-jit-practice-in-meituan.html

JDK 9 AOT(Ahead of Time Compilation) JIT
C C++

Rust Go AOT JIT Java
AOT Java

AOT

JIT AOT :

AOT JIT

 AOT GraalVM GraalVM JDK JDK
 Java JVM JavaScript Python JVM

GraalVM AOT JIT
GraalVM https://www.graalvm.org/latest/docs/

 Native Spring&Dubbo AOT

 AOT

AOT AOT

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 10/41

https://www.graalvm.org/
https://www.graalvm.org/
https://www.graalvm.org/latest/docs/
https://www.graalvm.org/latest/docs/
https://mp.weixin.qq.com/s/4haTyXUmh8m-dBQaEzwDJw
https://mp.weixin.qq.com/s/4haTyXUmh8m-dBQaEzwDJw
https://cn.dubbo.apache.org/zh-cn/blog/2023/06/28/%e8%b5%b0%e5%90%91-native-%e5%8c%96springdubbo-aot-%e6%8a%80%e6%9c%af%e7%a4%ba%e4%be%8b%e4%b8%8e%e5%8e%9f%e7%90%86%e8%ae%b2%e8%a7%a3/
https://cn.dubbo.apache.org/zh-cn/blog/2023/06/28/%e8%b5%b0%e5%90%91-native-%e5%8c%96springdubbo-aot-%e6%8a%80%e6%9c%af%e7%a4%ba%e4%be%8b%e4%b8%8e%e5%8e%9f%e7%90%86%e8%ae%b2%e8%a7%a3/

 JIT AOT AOT
AOT Java

JNI Java Native Interface
 Spring CGLIB AOT

CGLIB
ASM

 .class AOT ASM
 JIT

 OpenJDK Oracle JDK
 OpenJDK

2006 SUN Java OpenJDK 2009 Oracle Sun
 OpenJDK Oracle JDK Oracle JDK

Java8 ~ Java11 OpenJDK

 Java 7 OpenJDK Oracle JDK Oracle JDK
OpenJDK 7 Oracle

 Oracle 2012

OpenJDK Oracle JDK
 - Oracle JDK OpenJDK 7

 Oracle Java Java WebStart
 Rhino

 Oracle JDK

 Oracle JDK OpenJDK

1. OpenJDK Oracle JDK
OpenJDK JDK SUN

 SUN Oracle Oracle Oracle
Oracle Oracle SUN

 JDK Oracle
 Java Java Oracle

Java Oracle

Oracle JDK vs OpenJDK

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 11/41

 JDK OpenJDK
Oracle JDK

 Oracle JDK OpenJDK
https://github.com/openjdk/jdk

2. Oracle JDK JDK17
 3 3 JDK8u221
OpenJDK

3. Oracle JDK OpenJDK Java
Flight Recorder JFR Java Mission Control JMC

 Java 11 OracleJDK OpenJDK
OracleJDK

4. OpenJDK LTS OracleJDK LTS
 OpenJDK OracleJDK

LTS
5. Oracle JDK BCL/OTN OpenJDK GPL v2

 Oracle JDK OpenJDK

1. OpenJDK
 Alibaba OpenJDK Dragonwell8

https://github.com/alibaba/dragonwell8
2. OpenJDK yum JDK

OpenJDK Oracle JDK Oracle JDK JDK 8

3. OpenJDK Oracle JDK 6
OpenJDK 3 Oracle JDK

 OpenJDK Oracle JDK

OpenJDK

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 12/41

https://github.com/openjdk/jdk
https://github.com/openjdk/jdk
https://github.com/alibaba/dragonwell8
https://github.com/alibaba/dragonwell8

Oracle JDK OpenJDK

 OpenJDK OpenJDK AWS Amazon Corretto
 Alibaba Dragonwell

🌈

BCL Oracle Binary Code License Agreement JDK

OTN Oracle Technology Network License Agreement 11 JDK

 C++ Java C++
 C++

Java C++

Java
Java C++ Java

Java (GC)
C ++ Java

 Java
……

Java C++ ?

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 13/41

Java

1.

2.

3. Java

(
,)

Clean Code

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 14/41

Java

“ ”
“ ” “ ”

“ ”

private protected public

abstract class extends final implements inter

new static strictfp synchronized transient volat

break continue return do while if

Java

// check to see if the employee is eligible for full benefits
if ((employee.flags & HOURLY_FLAG) && (employee.age > 65))

if (employee.isEligibleForFullBenefits())

java
1
2

java
1

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 15/41

for instanceof switch case default asser

try catch throw throws finally

import package

boolean byte char double float int

short

super this void

goto const

Tips IDE
default

 switch default

 JDK8 default

default

⚠️ true , false , null

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

 1 1 Java
 (++) (--)

⭐️

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 16/41

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

++ --

 ++a --a /
b = ++a a 1 b

 a++ a-- /
b = a++ a b a 1

/ /

a b c
d e

a = 11 b = 9 c = 10 d = 10 e = 10

 JDK HashMap JDK1.8
 hash

1.

⭐️

int a = 9;
int b = a++;
int c = ++a;
int d = c--;
int e = --d;

static final int hash(Object key) {
 int h;
 // key.hashCode() hashcode
 // ^
 // >>>: 0
 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 }

java
1
2
3
4
5

java
1
2
3
4
5
6
7

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 17/41

2. int long

 2

 CRC

Java

<< : x << n , x 2 n
()

>> : 0,
 1 x >> n , x 2 n

>>> : 0

 double float

int long short byte char
int

 int / 32 % /
/ 32 32%32=0 / 42

/ 10 42%32=10 long / long
 64 64

x<<42 x<<10 x>>42 x>>10 x >>>42 x >>>
10

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 18/41

 32 %
 42 10 42%32=10

1. continue
2. break

return return

continue break return

int i = -1;
System.out.println(" " + i);
System.out.println(" " +
Integer.toBinaryString(i));
i <<= 10;
System.out.println(" 10 " + i);
System.out.println(" 10 " +
Integer.toBinaryString(i));

-1
11111111111111111111111111111111

 10 -1024
 10 11111111111111111111110000000000

int i = -1;
System.out.println(" " + i);
System.out.println(" " +
Integer.toBinaryString(i));
i <<= 42;
System.out.println(" 10 " + i);
System.out.println(" 10 " +
Integer.toBinaryString(i));

java
1
2
3
4
5
6

plain
1
2
3
4

java
1
2
3
4
5
6

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 19/41

1. return; return
2. return value; return

public static void main(String[] args) {
 boolean flag = false;
 for (int i = 0; i <= 3; i++) {
 if (i == 0) {
 System.out.println("0");
 } else if (i == 1) {
 System.out.println("1");
 continue;
 } else if (i == 2) {
 System.out.println("2");
 flag = true;
 } else if (i == 3) {
 System.out.println("3");
 break;
 } else if (i == 4) {
 System.out.println("4");
 }
 System.out.println("xixi");
 }
 if (flag) {
 System.out.println("haha");
 return;
 }
 System.out.println("heihei");
}

0
xixi
1
2
xixi
3
haha

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

plain
1
2
3
4
5
6
7

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 20/41

Java 8

6
4 byte short int long
2 float double

1 char
1 boolean

 8

byte 8 1 0 -128 ~ 127

short 16 2 0 -32768 -2^15 ~ 32767 2^15 - 1

int 32 4 0 -2147483648 ~ 2147483647

long 64 8 0L -9223372036854775808 -2^63 ~
9223372036854775807 2^63 -1

char 16 2 'u0000' 0 ~ 65535 (2^16 - 1)

float 32 4 0f 1.4E-45 ~ 3.4028235E38

double 64 8 0d 4.9E-324 ~ 1.7976931348623157E308

boolean 1 false true, false

You can see that the maximum representable positive numbers, such as byte , short , ,
int and , long are all reduced by 1. Why is this? In two's complement notation, the top

bit is used to indicate the sign (0 for positive numbers, 1 for negative numbers), while the

⭐️

Java

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 21/41

remaining bits represent the magnitude. Therefore, to represent the maximum positive
number, we need to set all bits except the top bit to 1. If we add 1, we will overflow, result‐
ing in a negative number.

The official documentation does not clearly define this boolean ; it depends on the specif‐
ic implementation by the JVM vendor. Logically, it occupies 1 bit, but in practice, efficient
computer storage is considered.

Additionally, the memory size occupied by each Java primitive type does not change with
changes in machine hardware architecture, as it does in most other languages. This invari‐
ance is one of the reasons why Java programs are more portable than programs written in
most other languages ​​(as mentioned in Section 2.2 of "Thinking in Java").

Notice:

1. When using data of type in Java , you must add L long after the value , otherwise it will
be parsed as an integer.

2. When using data of type in Java, you must add f or F float after the value , otherwise
it will not compile.

3. char a = 'h' char: single quote, String a = "hello" : double quote.

These eight basic types have corresponding packaging classes: Byte , Short , Integer ,
Long , Float , Double , Character , Boolean .

Usage : Apart from defining some constants and local variables, we rarely use primitive
types to define variables in other places, such as method parameters and object
properties. In addition, wrapper types can be used in generics, while primitive types
cannot.
Storage : Local variables of primitive data types are stored in the local variable table on
the Java Virtual Machine stack. Member variables of primitive data types (unmodified
static) are stored in the Java Virtual Machine's heap. Wrapper types are object types,

and we know that almost all object instances exist on the heap.
Space occupied : Compared with packaging types (object types), the space occupied
by basic data types is often very small.
Default value : The member variable wrapper type is not assigned a value null ,
while the basic type has a default value and is not null .
Comparison method : For primitive data types, == the comparison is based on the
value. For wrapper data types, == the comparison is based on the memory address of

What is the difference between primitive types and
package types?

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 22/41

the object. All integer wrapper objects are compared using the comparison
equals() method.

Why do we say that almost all object instances exist on the heap? This is because
after the HotSpot virtual machine introduced JIT optimization, it will perform escape
analysis on the object. If it finds that an object has not escaped outside the method, it may
be possible to achieve stack allocation through scalar replacement, thereby avoiding heap
allocation memory.

⚠️ Note: It's a common misconception that primitive types are stored on the
stack! The storage location of primitive types depends on their scope and declaration. If
they are local variables, they are stored on the stack; if they are member variables, they are
stored in the heap/method area/metaspace.

Most of the wrapper types of Java basic data types use caching mechanisms to improve
performance.

Byte , Short , Integer , Long These 4 wrapper classes create cache data of the corre‐
sponding type with values ​​[-128, 127] Character by default, create cache data with val‐
ues ​​in the range of [0, 127] Boolean , and directly return TRUE or FALSE .

Do you understand the caching mechanism of packaging
types?

public class Test {
 //
 int a = 10;
 // static JDK 1.7 1.8

 //
 static int b = 20;

 public void method() {
 //
 int c = 30;
 static int d = 40; // static

 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 23/41

You can modify the cache upper limit through Integer JVM parameters -
XX:AutoBoxCacheMax=<size> , but you cannot modify the lower limit -128. In actual use, it
is not recommended to set too large a value to avoid wasting memory or even OOM.

For Byte , Short , Long , Character there is no similar -XX:AutoBoxCacheMax para‐
meter that can be modified, so the cache range is fixed and cannot be adjusted through
JVM parameters. Boolean directly returns the predefined TRUE and FALSE instances,
without the concept of cache range.

Integer cache source code:

Character Cache source code:

public static Integer valueOf(int i) {
 if (i >= IntegerCache.low && i <= IntegerCache.high)
 return IntegerCache.cache[i + (-IntegerCache.low)];
 return new Integer(i);
}
private static class IntegerCache {
 static final int low = -128;
 static final int high;
 static {
 // high value may be configured by property
 int h = 127;
 }
}

public static Character valueOf(char c) {
 if (c <= 127) { // must cache
 return CharacterCache.cache[(int)c];
 }
 return new Character(c);
}

private static class CharacterCache {
 private CharacterCache(){}
 static final Character cache[] = new Character[127 + 1];
 static {

java
1
2
3
4
5
6
7
8
9
10
11
12
13

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 24/41

Boolean Cache source code:

If the corresponding range is exceeded, a new object will still be created. The size of the
cache range is just a trade-off between performance and resources.

The wrapper classes for the two floating-point number types Float do Double not imple‐
ment a caching mechanism.

Let's look at a question: What is the output of the following code true or false ?

Integer i1=40 This line of code will cause boxing, which means that this line of code is
equivalent to Integer i1=Integer.valueOf(40) . Therefore, i1 the object in the cache
is used directly. Integer i2 = new Integer(40) will directly create a new object.

So the answer is false . Did you get it right?

 for (int i = 0; i < cache.length; i++)
 cache[i] = new Character((char)i);
 }

}

public static Boolean valueOf(boolean b) {
 return (b ? TRUE : FALSE);
}

Integer i1 = 33;
Integer i2 = 33;
System.out.println(i1 == i2);// true

Float i11 = 333f;
Float i22 = 333f;
System.out.println(i11 == i22);// false

Double i3 = 1.2;
Double i4 = 1.2;
System.out.println(i3 == i4);// false

Integer i1 = 40;
Integer i2 = new Integer(40);
System.out.println(i1==i2);

16

java
1
2
3

java
1
2
3
4
5
6
7
8
9
10
11

java
1
2
3

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 25/41

Remember: All comparisons between integer wrapper class objects use the
equals method .

What is automatic unpacking?

Boxing : Wrapping primitive types with their corresponding reference types;
Unboxing : converting the package type to the basic data type;

For example:

The bytecode corresponding to the above two lines of code is:

Do you know about automatic boxing and unboxing?
What is the principle?

Integer i = 10; //
int n = i; //

 L1

 LINENUMBER 8 L1

 ALOAD 0

 BIPUSH 10

 INVOKESTATIC java/lang/Integer.valueOf (I)Ljava/lang/Integer;

 PUTFIELD AutoBoxTest.i : Ljava/lang/Integer;

 L2

 LINENUMBER 9 L2

java
1
2

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 26/41

From the bytecode, we find that boxing is actually calling valueOf() the method of the
packaging class, and unboxing is actually calling xxxValue() the method.

therefore,

Integer i = 10 Equivalent to Integer i = Integer.valueOf(10)
int n = i is equivalent to int n = i.intValue() ;

Note: Frequent unpacking and packing will seriously affect system perfor‐
mance. We should try to avoid unnecessary unpacking and packing.

Floating point operation precision loss code demonstration:

Why is there a risk of loss of precision when doing
floating-point operations?

 ALOAD 0

 ALOAD 0

 GETFIELD AutoBoxTest.i : Ljava/lang/Integer;

 INVOKEVIRTUAL java/lang/Integer.intValue ()I

 PUTFIELD AutoBoxTest.n : I

 RETURN

private static long sum() {
 // long Long
 Long sum = 0L;
 for (long i = 0; i <= Integer.MAX_VALUE; i++)
 sum += i;
 return sum;
}

float a = 2.0f - 1.9f;
float b = 1.8f - 1.7f;
System.out.printf("%.9f",a);// 0.100000024
System.out.println(b);// 0.099999905
System.out.println(a == b);// false

17
18
19
20
21
22
23
24
25
26
27

java
1
2
3
4
5
6
7

java
1
2
3
4
5

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 27/41

Why does this problem occur?

This has a lot to do with how computers store floating-point numbers. Computers use bi‐
nary, and the width of a number is limited. Infinitely recurring decimals are truncated
when stored in a computer, resulting in a loss of decimal precision. This explains why float‐
ing-point numbers cannot be accurately represented in binary.

For example, the decimal number 0.2 cannot be accurately converted into a binary
decimal:

For more information about floating-point numbers, I recommend reading the article
Computer System Fundamentals (IV) Floating-Point Numbers .

BigDecimal It can perform operations on floating-point numbers without losing preci‐
sion. Generally speaking, most business scenarios that require accurate floating-point cal‐
culation results (such as those involving money) are BigDecimal performed through .

How to solve the problem of precision loss in floating-
point operations?

// 0.2 2
//
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0
...

BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("1.00");
BigDecimal c = new BigDecimal("0.8");

BigDecimal x = a.subtract(c);
BigDecimal y = b.subtract(c);

System.out.println(x); /* 0.2 */

java
1
2
3
4
5
6
7
8

java
1
2
3
4
5
6
7
8
9
10
11
12

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 28/41

http://kaito-kidd.com/2018/08/08/computer-system-float-point/
http://kaito-kidd.com/2018/08/08/computer-system-float-point/

For BigDecimal a detailed introduction to BigDecimal, you can read this article I wrote:
Detailed Explanation of BigDecimal .

Basic numeric types have an expression range. If the range is exceeded, there is a risk of
numerical overflow.

In Java, the 64-bit long integer is the largest integer type.

BigInteger Arrays are used internally int[] to store integer data of any size.

Compared with regular integer type operations, BigInteger the efficiency of the opera‐
tion will be relatively low.

Syntax form : From the grammatical form, member variables belong to the class,
while local variables are variables defined in the code block or method or are parameters
of the method; member variables can be modified by modifiers such as public ,
private , static etc., while local variables cannot be modified by access control

modifiers and static ; however, both member variables and local variables can be
final modified by .

Storage method : From the perspective of variable storage in memory, if a member
variable is static modified with , it belongs to the class. If it is not static modified

How should data exceeding the long integer type be
represented?

variable

⭐️What is the difference between member variables and
local variables?

System.out.println(y); /* 0.20 */
//
System.out.println(Objects.equals(x, y)); /* false */
// compareTo 0
System.out.println(0 == x.compareTo(y)); /* true */

long l = Long.MAX_VALUE;
System.out.println(l + 1); // -9223372036854775808
System.out.println(l + 1 == Long.MIN_VALUE); // true

13

java
1
2
3

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 29/41

https://javaguide.cn/java/basis/bigdecimal.html
https://javaguide.cn/java/basis/bigdecimal.html

with , it belongs to the instance. Objects are stored in heap memory, while local
variables are stored in stack memory.
Survival time : From the perspective of the survival time of variables in memory,
member variables are part of the object and exist when the object is created, while local
variables are automatically generated when the method is called and disappear when
the method call ends.
Default value : From the perspective of whether the variable has a default value, if the
member variable is not assigned an initial value, it will be automatically assigned the
default value of the type (with one exception: final the modified member variable
must also be explicitly assigned a value), while local variables will not be automatically
assigned a value.

Why do member variables have default values?

1. Regardless of the variable type, what happens if there is no default value? The variable
stores an arbitrary random value corresponding to the memory address, and the pro‐
gram will encounter unexpected results when reading this value.

2. There are two ways to set default values: manual and automatic. According to the first
point, if there is no manual assignment, it must be automatically assigned. Member
variables can be manually assigned at runtime using methods such as reflection, but lo‐
cal variables cannot.

3. For the compiler (javac), it's easy to tell if a local variable has no value assigned, and a
direct error will be reported. However, member variables may be assigned values ​​at run‐
time, making this difficult to determine. A false "no default value" report would affect
the user experience, so automatic default value assignment is used.

Member variables and local variables code example:

public class VariableExample {

 //
 private String name;
 private int age;

 //
 public void method() {
 int num1 = 10; //
 String str = "Hello, world!"; //
 System.out.println(num1);
 System.out.println(str);

java
1
2
3
4
5
6
7
8
9
10
11
12

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 30/41

A static variable is static a variable modified by the keyword. It is shared by all instances
of a class. Regardless of how many objects are created within a class, they all share the
same copy of the static variable. This means that static variables are allocated memory only
once, even if multiple objects are created, saving memory.

Static variables are accessed by the class name, for example
StaticVariableExample.staticVar (private this is not possible if they are qualified

with a keyword).

Typically, static variables are final modified by keywords to become constants.

What is the function of static variables?

 }

 //
 public void method2(int num2) {
 int sum = num2 + 10; //
 System.out.println(sum);
 }

 //
 public VariableExample(String name, int age) {
 this.name = name; //
 this.age = age; //
 int num3 = 20; //
 String str2 = "Hello, " + this.name + "!"; //

 System.out.println(num3);
 System.out.println(str2);
 }
}

public class StaticVariableExample {
 //
 public static int staticVar = 0;
}

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

java
1
2
3
4

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 31/41

Format : A character constant is a single character enclosed in single quotes, and a
string constant is zero or more characters enclosed in double quotes.
Meaning : A character constant is equivalent to an integer value (ASCII value) and can
participate in expression operations; a string constant represents an address value (the
location where the string is stored in memory).
Memory size : Character constants only take up 2 bytes; string constants take up
several bytes.

⚠️ Note: char occupies two bytes in Java.

Code examples for character constants and string constants:

Output:

What is the difference between character constants and
string constants?

public class ConstantVariableExample {
 //
 public static final int constantVar = 0;
}

public class StringExample {
 //
 public static final char LETTER_A = 'A';

 //
 public static final String GREETING_MESSAGE = "Hello, world!";
 public static void main(String[] args) {
 System.out.println("

"+Character.BYTES);
 System.out.println("

"+GREETING_MESSAGE.getBytes().length);
 }
}

2
13

java
1
2
3
4

java
1
2
3
4
5
6
7
8
9
10
11

plain
1
2

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 32/41

The return value of a method is the result of executing the code in the method body
(assuming the method can produce a result). The purpose of the return value is to receive
the result so that it can be used in other operations.

We can classify methods into the following types according to their return value and para‐
meter types:

1. Methods with no parameters and no return value

2. Methods with parameters but no return value

3. Methods with return values ​​and no parameters

method

What is the return value of a method? What types of
methods are there?

public void f1() {
 //......
}
// return
public void f(int a) {
 if (...) {
 // ,
 return;
 }
 System.out.println(a);
}

public void f2(Parameter 1, ..., Parameter n) {
 //......
}

public int f3() {
 //......
 return x;
}

java
1
2
3
4
5
6
7
8
9
10
11

java
1
2
3

java
1
2
3
4

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 33/41

4. Methods with return values ​​and parameters

This requires the combination of JVM related knowledge, the main reasons are as follows:

1. Static methods belong to the class, and memory is allocated when the class is loaded.
They can be accessed directly through the class name. Non-static members, on the other
hand, belong to instance objects and only exist after the object is instantiated. They need
to be accessed through the instance object of the class.

2. The static method already exists when the non-static members of the class do not exist.
At this time, calling the non-static member that does not exist in the memory is an
illegal operation.

1. Calling method

Why can't static methods call non-static members?

⭐️What is the difference between static methods and
instance methods?

public int f4(int a, int b) {
 return a * b;
}

public class Example {
 //
 public static final char LETTER_A = 'A';

 //
 public static final String GREETING_MESSAGE = "Hello, world!";

 public static void main(String[] args) {
 //
 System.out.println(" " + LETTER_A);

 //
 System.out.println(" " + GREETING_MESSAGE);
 }
}

java
1
2
3

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 34/41

When calling static methods externally, you can use . either the __name__ or
. the __name__ method, while instance methods can only use the __name__

method. In other words, calling static methods does not require creating an ob‐
ject .

However, it should be noted that it is generally not recommended to use . the
method of calling static methods. This method is very easy to cause confusion. Static meth‐
ods do not belong to a certain object of the class but to the class itself.

Therefore, it is generally recommended to use . the method to call static
methods.

2. Are there any restrictions on accessing class members?

When static methods access members of this class, they are only allowed to access static
members (i.e. static member variables and static methods), and are not allowed to access
instance members (i.e. instance member variables and instance methods). This restriction
does not exist for instance methods.

Overloading means that the same method can be processed differently according to
different input data.

⭐️What is the difference between overloading and
overriding?

public class Person {
 public void method() {
 //......
 }

 public static void staicMethod(){
 //......
 }
 public static void main(String[] args) {
 Person person = new Person();
 //
 person.method();
 //
 Person.staicMethod()
 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 35/41

Overriding is when a subclass inherits the same method from the parent class, has the
same input data, but wants to respond differently from the parent class, you have to
override the parent class method

Occurs in the same class (or between a parent class and a child class), the method name
must be the same, the parameter types, numbers, and orders are different, and the method
return values ​​and access modifiers can be different.

The book "Java Core Technology" introduces overloading as follows:

If multiple methods (such as StringBuilder the constructor) have the same name and
different parameters, overloading occurs.

The compiler must choose which method to execute. It does this by matching the
argument types given by each method with the value types used in a particular method
call. A compile-time error occurs if the compiler can't find a matching argument, either
because there is no match or because no method is better than the others (this process is
called overloading resolution).
Java allows overloading of any method, not just constructor methods.

To sum up: overloading means that multiple methods with the same name in the same
class perform different logical processing according to different parameters.

Overriding occurs at runtime, and is the process of a subclass rewriting the implementa‐
tion of the parent class's allowed access methods.

1. The method name and parameter list must be the same. The return value type of the
subclass method should be smaller than or equal to the return value type of the parent
class method. The scope of the thrown exception is smaller than or equal to the parent
class, and the scope of the access modifier is greater than or equal to the parent class.

2. If the parent class method access modifier is , private/final/static the subclass
cannot override the method, but static the modified method can be declared again.

3. Constructors cannot be overridden

Overload

Rewrite

StringBuilder sb = new StringBuilder();
StringBuilder sb2 = new StringBuilder("HelloWorld");

java
1
2

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 36/41

To sum up: overriding is the transformation of the parent class method by the
subclass. The external appearance cannot be changed, but the internal logic
can be changed.

Differences Overloading Overriding

Occurrence
range In the same class.

There is an inheritance
relationship between the
parent class and the child
class.

Method
signature

The method names must be the
same , but the parameter
lists must be different (at
least one of the parameter type,
number, or order must be
different).

The method name and
parameter list must be
exactly the same .

Return Type
It has nothing to do with the
return value type and can be
modified arbitrarily.

The return type of a
subclass method must
be the same as the return
type of the superclass
method , or a subclass of it
.

Access
modifiers

It has nothing to do with the
access modifier and can be
modified arbitrarily.

The access rights of a
subclass method cannot be
lower than those of the
superclass method. (public
> protected > default >
private)

Binding
period

Compile-time binding or static
binding

Run-time Binding or
Dynamic Binding

Method rewriting should follow the "two same, two small, and one large" rule
(the following content is excerpted from "Crazy Java Lecture Notes", issue#892):

"Two same" means the method name is the same and the parameter list is the same;

Summarize

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 37/41

https://github.com/Snailclimb/JavaGuide/issues/892
https://github.com/Snailclimb/JavaGuide/issues/892

"Two small" means that the return value type of the subclass method should be smaller
or equal to the return value type of the parent class method, and the exception class
declared thrown by the subclass method should be smaller or equal to the exception
class declared thrown by the parent class method;
"A large" means that the access rights of the subclass method should be greater than or
equal to the access rights of the parent class method.

⭐️ Regarding overriding return types: A few words of clarification are needed here, as
the above description isn't entirely clear: if a method's return type is void or a primitive
data type, the return value cannot be modified when overriding. However, if the method's
return value is a reference type, a subclass of that reference type can be returned when
overriding.

public class Hero {
 public String name() {
 return " ";
 }
}
public class SuperMan extends Hero{
 @Override
 public String name() {
 return " ";
 }
 public Hero hero() {
 return new Hero();
 }
}

public class SuperSuperMan extends SuperMan {
 @Override
 public String name() {
 return " ";
 }

 @Override
 public SuperMan hero() {
 return new SuperMan();
 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 38/41

Since Java 5, Java has supported the definition of variable-length parameters. Variable-
length parameters allow you to pass in parameters of varying lengths when calling a
method. For example, the following method can accept zero or more parameters.

In addition, a variable parameter can only be the last parameter of a function, but it may or
may not be preceded by any other parameters.

What should I do if I encounter method overloading? Will the method with
fixed parameters or variable parameters be matched first?

The answer is that the method with fixed parameters will be matched first because the
method with fixed parameters has a higher matching degree.

Let's demonstrate this through the following example.

What are variable length parameters?

public static void method1(String... args) {
 //......
}

public static void method2(String arg1, String... args) {
 //......
}

/**
 * JavaGuide " " Java
 *
 * @author Guide
 * @date 2021/12/13 16:52
 **/
public class VariableLengthArgument {

 public static void printVariable(String... args) {
 for (String s : args) {
 System.out.println(s);
 }
 }

java
1
2
3

java
1
2
3

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 39/41

Output:

class In addition, Java's variable parameters will actually be converted into an array af‐
ter compilation, which can be seen from the files generated after compilation .

What is the difference between JDK and
JRE? https://stackoverflow.com/questions/1906445/what-is-the-difference-between-
jdk-and-jre

refer to

 public static void printVariable(String arg1, String arg2) {
 System.out.println(arg1 + arg2);
 }

 public static void main(String[] args) {
 printVariable("a", "b");
 printVariable("a", "b", "c", "d");
 }
}

ab
a
b
c
d

public class VariableLengthArgument {

 public static void printVariable(String... args) {
 String[] var1 = args;
 int var2 = args.length;

 for(int var3 = 0; var3 < var2; ++var3) {
 String s = var1[var3];
 System.out.println(s);
 }

 }
 //
}

15
16
17
18
19
20
21
22
23

plain
1
2
3
4
5

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 40/41

https://stackoverflow.com/questions/1906445/what-is-the-difference-between-jdk-and-jre
https://stackoverflow.com/questions/1906445/what-is-the-difference-between-jdk-and-jre
https://stackoverflow.com/questions/1906445/what-is-the-difference-between-jdk-and-jre

Oracle vs OpenJDK: https://www.educba.com/oracle-vs-openjdk/
Differences between Oracle JDK and OpenJDK:
https://stackoverflow.com/questions/22358071/differences-between-oracle-jdk-and-
openjdk
Thoroughly understand Java's shift operators:
https://juejin.cn/post/6844904025880526861

Recently Updated2025/7/27 10:31
Contributors: Snailclimb , wangchao96 , SnailClimb , zeason , feng qijun , tecyang , Jin Yang , spike ,

Fenmul , dongzl , yguangyin , , catch , HanSai , yellowgg , hughyu , Kou Shuang , Kai ,
NaivePerdant , Yang Tian , ​​Fy , shuang.kou , JerryQiang , yazhouasu , codeYu , das-friday-night , guide ,

Wenpeng , shellhub , LIU , VergeDX , TTL , TimorYang , Chong Chong Chong , Xiang Jaywhen ,
UniverseHua , sunguoliang , lith0806 , 2293736867 , Tan Jiuding , kaka2634 , Snoopy , anaer ,

gongjixiaobai , Devhui , Zanzz , sam , Guide , ahh556 , Raxcl , daniubi , Amos Chu , cckkrr , Horstson ,
Mr.Hope , dp0d , Wang Xiaoqing , ZeroMarker , Dongcp , scwlkq , dongjunjie005 , will , qksuki , pcdd ,

qiliq , qq651901286 , xieliangza , Kisa-Dong , biea008 , AhogeK

Copyright © 2025 Guide

9/17/25, 11:54 PM Summary of Common Java Basics Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-01.html#包装类型的缓存机制了解么 41/41

https://www.educba.com/oracle-vs-openjdk/
https://www.educba.com/oracle-vs-openjdk/
https://stackoverflow.com/questions/22358071/differences-between-oracle-jdk-and-openjdk
https://stackoverflow.com/questions/22358071/differences-between-oracle-jdk-and-openjdk
https://stackoverflow.com/questions/22358071/differences-between-oracle-jdk-and-openjdk
https://juejin.cn/post/6844904025880526861
https://juejin.cn/post/6844904025880526861

