
Overview of Java exception class hierarchy diagram :

abnormal

Summary of Common Java Basics
Interview Questions (Part 2)

Guide Java About 7019 words About 23 minutesJava Basics

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 1/24

https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/article/

In Java, all exceptions have a common ancestor class java.lang in the package
Throwable . Throwable The class has two important subclasses:

Exception : Exceptions that the program itself can handle can be catch caught by .
Exception They can be divided into Checked Exception (checked exceptions, must be

handled) and Unchecked Exception (unchecked exceptions, can be left unhandled).
Error Error Exceptions are errors that the program cannot handle. We cannot
catch catch them using Exception , and Exception catching is not recommended
catch . Examples include Java Virtual Machine runtime errors (Virtual
MachineError), insufficient virtual machine memory errors (OutOfMemoryError),
and class definition errors (NoClassDefFoundError). When these exceptions occur,
the Java Virtual Machine (JVM) typically terminates the thread.

What is the difference between Exception and Error?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 2/24

Checked Exception is a checked exception. During the compilation process of Java code,
if the checked exception is not handled by the catch or throws keyword, it will not pass
the compilation.

For example, the following IO operation code:

Except for RuntimeException Exception and its subclasses, all other Exception classes
and their subclasses are checked exceptions. Common checked exceptions include: IO-
related exceptions, Exception ClassNotFoundException , SQLException ...

Unchecked Exception means unchecked exception . During the compilation process
of Java code, we can pass the compilation normally even if we do not handle unchecked
exceptions.

RuntimeException And its subclasses are collectively referred to as unchecked
exceptions. Common ones are (it is recommended to write them down, they will be often
used in daily development):

NullPointerException (Null pointer error)
IllegalArgumentException (Parameter error, such as method input parameter type

error)
NumberFormatException (String to number conversion error,
IllegalArgumentException subclass)
ArrayIndexOutOfBoundsException (Array out of bounds error)
ClassCastException (Type conversion error)
ArithmeticException (Arithmetic error)
SecurityException (Security errors such as insufficient permissions)

⭐️What is the difference between Checked Exception and
Unchecked Exception?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 3/24

UnsupportedOperationException (Unsupported operation errors such as creating the
same user repeatedly)
…

String getMessage() : Returns detailed information when an exception occurs
String toString() : Returns a brief description of the exception that occurred
String getLocalizedMessage() : Returns the localized information of the exception

object. Use Throwable a subclass that overrides this method to generate localized
information. If the subclass does not override this method, the information returned by
this method getMessage() is the same as the result returned
void printStackTrace() Throwable : Print the exception information encapsulated

by the object on the console

try Block: Used to catch exceptions. It can be followed by zero or more catch blocks.
If there is no catch block, it must be followed by a finally block.
catch Block: used to handle exceptions caught by try.
finally finally Block: The statements in the block are executed regardless of

whether the exception is caught or handled . When a statement is encountered in try a
block or catch a block return , finally the block is executed before the method
returns.

What are the common methods of Throwable class?

How to use try-catch-finally?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 4/24

Code example:

Output:

Note: Do not use return in a finally block! When both a try statement and a finally
block contain return statements, the return statement in the try block is ignored. This is
because the return value in the try statement is first temporarily stored in a local variable.
When the return in the finally block is executed, the value of the local variable becomes the
return value in the finally block.

Code example:

Output:

try {
 System.out.println("Try to do something");
 throw new RuntimeException("RuntimeException");
} catch (Exception e) {
 System.out.println("Catch Exception -> " + e.getMessage());
} finally {
 System.out.println("Finally");
}

Try to do something
Catch Exception -> RuntimeException
Finally

public static void main(String[] args) {
 System.out.println(f(2));
}

public static int f(int value) {
 try {
 return value * value;
 } finally {
 if (value == 2) {
 return 0;
 }
 }
}

java
1
2
3
4
5
6
7
8

plain
1
2
3

java
1
2
3
4
5
6
7
8
9
10
11
12
13

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 5/24

Not necessarily! In some cases, the code in finally will not be executed.

For example, if the virtual machine is terminated before finally, the code in finally will not
be executed.

Output:

finally In addition, the block code will not be executed in the following two special cases
:

1. The thread where the program is located dies.
2. Turn off the CPU.

Related issue: https://github.com/Snailclimb/JavaGuide/issues/190 .

try catch finally 🧗🏻 Let’s go a step further: analyze the implementation principle
behind this syntactic sugar from the bytecode perspective .

Will the code in finally be executed?

0

try {
 System.out.println("Try to do something");
 throw new RuntimeException("RuntimeException");
} catch (Exception e) {
 System.out.println("Catch Exception -> " + e.getMessage());
 // Java
 System.exit(1);
} finally {
 System.out.println("Finally");
}

Try to do something
Catch Exception -> RuntimeException

plain
1

java
1
2
3
4
5
6
7
8
9
10

plain
1
2

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 6/24

https://github.com/Snailclimb/JavaGuide/issues/190
https://github.com/Snailclimb/JavaGuide/issues/190

1. Scope (resource definition): Any object that implements
java.lang.AutoCloseable or java.io.Closeable

2. Closing resources and finally blocks are executed in the order that they are
closed: In try-with-resources a statement, any catch or finally block is executed
after the declared resources are closed.

Effective Java clearly states:

When faced with resources that must be closed, we should always prefer using try-
with-resources instead of try-finally . The resulting code is shorter and clearer,
and the exceptions it generates are more useful to us. try-with-resources The
statement makes it easier to write code that must close resources, which would be try-
finally almost impossible otherwise.

In Java, resources like InputStream , OutputStream , Scanner , PrintWriter etc.
require us to call close() methods to manually close them. Generally, we use try-
catch-finally statements to achieve this requirement, as follows:

Use the statement after Java 7 try-with-resources to transform the above code:

How to use try-with-resources instead try-catch-
finally ?

//
Scanner scanner = null;
try {
 scanner = new Scanner(new File("D://read.txt"));
 while (scanner.hasNext()) {
 System.out.println(scanner.nextLine());
 }
} catch (FileNotFoundException e) {
 e.printStackTrace();
} finally {
 if (scanner != null) {
 scanner.close();
 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 7/24

Of course, when multiple resources need to be closed, try-with-resources it is very
simple to implement using . However, if you still use it, try-catch-finally it may cause
many problems.

try-with-resources Multiple resources can be declared in a block by separating them
with semicolons .

Do not define exceptions as static variables, because this will cause the exception stack
information to be messed up. Every time an exception is thrown manually, we need to
manually create a new exception object to throw.
The exception information thrown must be meaningful.
It is recommended to throw more specific exceptions, such as when a string is converted
to a number with an incorrect format, it should be thrown
NumberFormatException instead of its parent class IllegalArgumentException .

Avoid duplicate logging: If sufficient information (including exception type, error
message, and stack trace) has been logged where the exception is caught, the same error
message should not be logged again when the exception is thrown again in the business

⭐️What should I pay attention to when using exceptions?

try (Scanner scanner = new Scanner(new File("test.txt"))) {
 while (scanner.hasNext()) {
 System.out.println(scanner.nextLine());
 }
} catch (FileNotFoundException fnfe) {
 fnfe.printStackTrace();
}

try (BufferedInputStream bin = new BufferedInputStream(new
FileInputStream(new File("test.txt")));
 BufferedOutputStream bout = new BufferedOutputStream(new
FileOutputStream(new File("out.txt")))) {
 int b;
 while ((b = bin.read()) != -1) {
 bout.write(b);
 }
}
catch (IOException e) {
 e.printStackTrace();
}

java
1
2
3
4
5
6
7

java
1
2
3
4
5
6
7
8
9
10

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 8/24

code. Duplicate logging will bloat the log file and may obscure the actual cause of the
problem, making it more difficult to track and resolve.
…

Java Generics is a new feature introduced in JDK 5. Using generic parameters can
enhance the readability and stability of code.

The compiler can detect generic parameters and specify the type of object passed in
through generic parameters. For example, ArrayList<Person> persons = new
ArrayList<Person>() this line of code specifies that ArrayList only Person objects of
type _object can be passed in. If objects of other types are passed in, an error will be
reported.

In addition, the native List return type Object requires manual type conversion before
use, while the compiler automatically converts after using generics.

There are generally three ways to use generics: generic classes , generic interfaces ,
and generic methods .

1. Generic class :

Generics

What are generics? What are they used for?

What are the ways to use generics?

ArrayList<E> extends AbstractList<E>

// T T E K V
// T
public class Generic<T>{

 private T key;

 public Generic(T key) {
 this.key = key;
 }

java
1

java
1
2
3
4
5
6
7
8
9
10

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 9/24

How to instantiate a generic class:

2. Generic interface :

Implement a generic interface without specifying a type:

Implement the generic interface and specify the type:

3. Generic methods :

 public T getKey(){
 return key;
 }
}

Generic<Integer> genericInteger = new Generic<Integer>(123456);

public interface Generator<T> {
 public T method();
}

class GeneratorImpl<T> implements Generator<T>{
 @Override
 public T method() {
 return null;
 }
}

class GeneratorImpl implements Generator<String> {
 @Override
 public String method() {
 return "hello";
 }
}

 public static < E > void printArray(E[] inputArray)
 {
 for (E element : inputArray){
 System.out.printf("%s ", element);
 }

11
12
13
14

java
1

java
1
2
3

java
1
2
3
4
5
6

java
1
2
3
4
5
6

java
1
2
3
4
5

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 10/24

use:

Note: public static < E > void printArray(E[] inputArray) Generally called
static generic method; in Java, generic is just a placeholder and can only be used after
the type is passed. The type parameter can only be passed when the class is instantiated.
Since the static method is loaded before the class is instantiated, that is, the generic in
the class has not yet passed the real type parameter, the static method has been loaded.
Therefore, the static generic method cannot use the generic declared on the class. You
can only use the generics declared by yourself. <E>

Custom interface general return result CommonResult<T> Through parameters, T the
data type of the result can be dynamically specified according to the specific return type
Define Excel a processing class ExcelUtil<T> to dynamically specify Excel the
exported data type
Build a collection tool class (see the method Collections in). sort binarySearch
…

For a detailed explanation of reflection, please see this article Detailed Explanation of Java
Reflection Mechanism .

Simply put, Java reflection is the ability to dynamically obtain class information
and operate classes or objects (methods, properties) while the program is
running .

Where are generics used in the project?

⭐️Reflection

What is Reflection?

 System.out.println();
 }

// Integer, Double Character
Integer[] intArray = { 1, 2, 3 };
String[] stringArray = { "Hello", "World" };
printArray(intArray);
printArray(stringArray);

6
7

java
1
2
3
4
5

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 11/24

https://javaguide.cn/java/basis/reflection.html
https://javaguide.cn/java/basis/reflection.html
https://javaguide.cn/java/basis/reflection.html

Typically, the code we write has its type determined at compile time, making it clear which
method to call and which field to access. However, reflection allows us to discover a class's
methods, properties, and constructors at runtime . We can even dynamically create
objects, call methods, or modify properties, even if those methods or
properties are private.

It is this ability to "look back" and perform operations at runtime that makes reflection the
cornerstone of many common frameworks and libraries . It makes the code more
flexible and can handle types that are unknown at compile time.

advantage:

1. Flexibility and dynamism : Reflection allows programs to dynamically load classes,
create objects, call methods, and access fields at runtime. This allows the program's
behavior to be dynamically adapted and extended based on actual needs (such as
configuration files, user input, and annotations), significantly improving the system's
flexibility and adaptability.

2. The foundation of framework development : Many modern Java frameworks
(such as Spring, Hibernate, and MyBatis) make extensive use of reflection to implement
core features such as dependency injection (DI), aspect-oriented programming (AOP),
object-relational mapping (ORM), and annotation processing. Reflection is an
indispensable foundational tool for implementing these "magic" features.

3. Decoupling and generality : Reflection allows you to write more general, reusable,
and highly decoupled code, reducing dependencies between modules. For example,
reflection allows you to implement general object copying, serialization, and Bean tools.

shortcoming:

1. Performance overhead : Reflection operations are generally slower than direct code
calls due to factors such as dynamic type resolution, method lookup, and limited JIT
compiler optimizations. However, for most framework scenarios, this performance loss
is generally acceptable, or the framework itself performs some caching optimizations.

2. Security issues : Reflection can bypass Java's access control mechanisms (such as
access to private fields and methods), breaking encapsulation and potentially leading
to data leakage or malicious program tampering. Furthermore, it can bypass generic
type checks, posing type safety risks.

3. Code readability and maintainability : Excessive use of reflection can make code
complex, difficult to understand, and difficult to debug. Errors are often exposed at
runtime and are not as easy to find as compile-time errors.

What are the advantages and disadvantages of reflection?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 12/24

Related reading: Java Reflection: Why is it so slow ?.

We may rarely interact directly with Java reflection when writing business code. But you
might not realize it, but you're enjoying the benefits of reflection every day! Many
popular frameworks, such as Spring/Spring Boot and MyBatis, make
extensive use of reflection at the underlying level , which makes them so flexible
and powerful.

Here are a few simple examples to help you understand.

1. Dependency Injection and Inversion of Control (IoC)

IoC frameworks represented by Spring/Spring Boot scan classes with specific annotations
(such as @Component , @Service , @Repository , @Controller) at startup, use
reflection to instantiate objects (Beans), and inject dependencies through reflection (such
as @Autowired , constructor injection, etc.).

2. Annotation processing

An annotation itself is just a "marker"; someone needs to read it to understand what needs
to be done. Reflection is that "reader." The framework uses reflection to check for specific
annotations on classes, methods, and fields, and then executes logic based on the
annotation information. For example, if it sees an annotation @Value , it uses reflection to
read the annotation content, find the corresponding value in the configuration file, and
then use reflection to set the value to the field.

3. Dynamic Proxy and AOP

Want to automatically add some functionality before and after a method call (such as
logging, initiating a transaction, or performing permission checks)? Aspect-Oriented
Programming (AOP) is exactly what this is, and dynamic proxies are a common way to
implement AOP. The JDK's built-in dynamic proxies (Proxy and InvocationHandler) rely
on reflection. When a proxy object calls methods on the real object, it
Method.invoke does so through reflection.

What are the application scenarios of reflection?

public class DebugInvocationHandler implements InvocationHandler {
 private final Object target; //

 public DebugInvocationHandler(Object target) { this.target =
target; }

java
1
2
3
4
5

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 13/24

https://stackoverflow.com/questions/1392351/java-reflection-why-is-it-so-slow
https://stackoverflow.com/questions/1392351/java-reflection-why-is-it-so-slow

4. Object-Relational Mapping (ORM)

Frameworks like MyBatis and Hibernate can automatically convert rows of database data
into Java objects. How do they determine which Java properties correspond to database
fields? Again, they rely on reflection. They use reflection to retrieve a list of Java class
properties, then map the query results by name or configuration. They then use reflection
to call setters or directly modify field values. Conversely, when saving objects to the
database, reflection is also used to read property values ​​and construct SQL.

Annotation (Annotation) is a new feature introduced in Java 5. It can be regarded as a
special comment, which is mainly used to modify classes, methods or variables and provide
certain information for the program to use during compilation or runtime.

Annotation is essentially a Annotation special interface that inherits:

annotation

What is annotation?

 // proxy: , method: , args:
 public Object invoke(Object proxy, Method method, Object[]
args) throws Throwable {
 System.out.println(" " + method.getName() +
" ");
 //
 Object result = method.invoke(target, args);
 System.out.println(" " + method.getName() +
" ");
 return result;
 }
}

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.SOURCE)
public @interface Override {

}

6
7
8
9
10
11
12
13
14

java
1
2
3
4
5
6
7

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 14/24

JDK provides many built-in annotations (such as @Override , @Deprecated), and we
can also customize annotations.

Annotations take effect only after being parsed. There are two common parsing methods:

Direct scanning during compilation : The compiler scans and processes the
corresponding annotations when compiling Java code. For example, if a method uses
@Override annotations, the compiler will detect whether the current method overrides

the corresponding method of the parent class during compilation.
Processing by reflection at runtime : Annotations that come with the framework
(such as the Spring framework @Value) @Component are all processed through
reflection.

For a detailed explanation of SPI, please see this article Java SPI mechanism detailed
explanation .

SPI stands for Service Provider Interface, which literally means "service provider
interface". My understanding is that it is an interface specifically provided to service
providers or developers who extend framework functions.

SPI separates the service interface from the specific service implementation, decoupling
the service caller from the service implementer, which can improve the scalability and
maintainability of the program. Modifying or replacing the service implementation does
not require modifying the caller.

Many frameworks use Java's SPI mechanism, such as the Spring framework, database
loading driver, logging interface, and Dubbo's extended implementation.

What are the methods for parsing annotations?

⭐️SPI

What is SPI?

public interface Override extends Annotation{

}

8
9

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 15/24

https://javaguide.cn/java/basis/spi.html
https://javaguide.cn/java/basis/spi.html
https://javaguide.cn/java/basis/spi.html

What is the difference between SPI and API?

When talking about SPI, we have to talk about API (Application Programming Interface).
In a broad sense, they are both interfaces, and it is easy to confuse them. Here is a picture
to illustrate:

Generally, modules communicate with each other through interfaces, so we introduce an
"interface" between the service caller and the service implementer (also known as the
service provider).

When an implementer provides an interface and an implementation, we can access the
capabilities provided by the implementer by calling the implementer's interface. This is
called an API . In this case, both the interface and the implementation are placed in the

What is the difference between SPI and API?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 16/24

implementer's package. The caller accesses the implementer's functionality through the
interface without having to worry about the specific implementation details.
When an interface exists on the caller side, this is called an SPI . The interface caller
determines the interface rules, and then different manufacturers implement the
interface according to these rules to provide services.

Let's take a simple example: Company H is a technology company that has designed a new
chip and now needs to mass-produce it. There are several chip manufacturing companies
on the market. At this time, as long as Company H specifies the production standards for
this chip (defines the interface standards), then these cooperating chip companies (service
providers) will deliver their own unique chips in accordance with the standards (providing
different implementation solutions, but the results are the same).

The SPI mechanism can greatly improve the flexibility of interface design, but the SPI
mechanism also has some disadvantages, such as:

It is necessary to traverse and load all implementation classes, and it is not possible to
load on demand, so the efficiency is relatively low.
When multiple ServiceLoader are running at the same load time, there will be
concurrency issues.

For a detailed explanation of serialization and deserialization, please see this article Java
Serialization Detailed Explanation , which covers more comprehensive knowledge points
and interview questions.

If we need to persist Java objects, such as saving Java objects in files or transmitting Java
objects over the network, serialization is required in these scenarios.

In simple terms:

Serialization : Converting a data structure or object into a form that can be stored or
transmitted, usually a binary byte stream, or a text format such as JSON or XML

What are the advantages and disadvantages of SPI?

⭐️Serialization and deserialization

What is serialization? What is deserialization?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 17/24

https://javaguide.cn/java/basis/serialization.html
https://javaguide.cn/java/basis/serialization.html
https://javaguide.cn/java/basis/serialization.html

Deserialization : The process of converting the data generated during the serialization
process into the original data structure or object

For object-oriented programming languages ​​like Java, what we serialize are objects
(Object), that is, instantiated classes (Class). However, in semi-object-oriented languages ​​
like C++, struct (structure) defines the data structure type, while class corresponds to the
object type.

The following are common application scenarios for serialization and deserialization:

Objects need to be serialized before being transmitted over the network (such as when
calling a remote method RPC), and then deserialized after receiving the serialized
object;
Objects need to be serialized before being stored in a file, and objects need to be
deserialized before being read from a file;
Serialization is required before storing objects in a database (such as Redis), and
deserialization is required to read objects from the cache database;
Objects need to be serialized before being stored in memory and deserialized after being
read from memory.

Wikipedia describes serialization as follows:

In computer science data processing, serialization refers to the process of
converting a data structure or object state into a usable format (such as storing it in a
file, storing it in a buffer, or sending it over a network) so that the original state can be
restored later in the same or another computer environment. When the bytes are
retrieved according to the serialized format, it can be used to produce a copy with the
same semantics as the original object. For many objects, such as complex objects that
use a large number of references, this serialization and reconstruction process is not
easy. Object serialization in object-oriented programming does not generalize the
functions associated with the original object. This process is also called object
marshalling. The reverse operation of extracting a data structure from a series of bytes is
deserialization (also known as unmarshalling, deserialization, or unmarshalling).

To sum up: the main purpose of serialization is to transmit objects over the
network or to store objects in the file system, database, or memory.

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 18/24

https://www.corejavaguru.com/java/serialization/interview-questions-1

To which layer of the TCP/IP 4-layer model does the serialization protocol
correspond?

We know that both parties in network communication must use and adhere to the same
protocol. The TCP/IP four-layer model looks like this. To which layer does the serialization
protocol belong?

1. Application Layer
2. Transport layer
3. Network layer
4. Network Interface Layer

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 19/24

As shown in the figure above, in the OSI seven-layer protocol model, the presentation layer
primarily processes the application layer's user data and converts it into a binary stream.
Conversely, it converts the binary stream into application layer user data. Doesn't this
correspond to serialization and deserialization?

Because the application layer, presentation layer, and session layer in the OSI seven-layer
protocol model all correspond to the application layer in the TCP/IP four-layer model, the
serialization protocol is part of the TCP/IP protocol application layer.

For variables that you do not want to serialize, use transient the keyword modification.

transient The function of the keyword is to prevent the serialization of variables in the
instance that are modified with this keyword; when the object is deserialized, the
transient modified variable values ​​will not be persisted and restored.

transient A few more notes about :

transient Only variables can be modified, not classes and methods.
transient For modified variables, the variable value will be set to the default value of

the type after deserialization. For example, if it is a modified int type, the result after
deserialization will be 0 .
static Since variables do not belong to any object, transient they will not be

serialized regardless of whether they are modified by keywords or not.

The JDK's built-in serialization method is generally not used due to its low efficiency and
security issues. Commonly used serialization protocols include Hessian, Kryo, Protobuf,
and ProtoStuff, all of which are binary-based serialization protocols.

Text serialization methods like JSON and XML have better readability but poor
performance and are generally not chosen.

We rarely or almost never use the serialization method that comes with JDK directly. The
main reasons are as follows:

What if some fields do not want to be serialized?

What are the common serialization protocols?

Why is it not recommended to use JDK's own
serialization?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 20/24

Cross-language calls are not supported : If the service is developed in other
languages, it is not supported.
Poor performance : Compared with other serialization frameworks, the performance
is lower. The main reason is that the byte array after serialization is larger, resulting in
increased transmission costs.
Security issues exist : Serialization and deserialization themselves aren't inherently
problematic. However, if the input data for deserialization is user-controllable, an
attacker can construct malicious input to cause deserialization to produce unexpected
objects, potentially allowing arbitrary code to execute. Related reading: Application
Security: The Tragedy of Java Deserialization Vulnerabilities .

For a detailed explanation of I/O, please read the following articles, which cover more
comprehensive knowledge points and interview questions.

Java IO basics summary
Java IO Design Patterns Summary
Detailed Explanation of the Java IO Model

IO stands for Input/Output input and output. Input is the process of inputting data into
computer memory, while output is the process of outputting data to external storage (such
as a database, file, or remote host). The data transfer process is similar to the flow of water,
hence the name IO stream. In Java, IO streams are categorized as input streams and
output streams, which are further categorized as byte streams and character streams
depending on how the data is processed.

More than 40 Java IO stream classes are derived from the following four abstract base
classes.

InputStream / Reader : The base class of all input streams, the former is a byte input
stream, and the latter is a character input stream.
OutputStream / Writer : The base class of all output streams, the former is a byte

output stream, and the latter is a character output stream.

I/O

Do you know Java IO streams?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 21/24

https://cryin.github.io/blog/secure-development-java-deserialization-vulnerability/
https://cryin.github.io/blog/secure-development-java-deserialization-vulnerability/
https://cryin.github.io/blog/secure-development-java-deserialization-vulnerability/
https://javaguide.cn/java/io/io-basis.html
https://javaguide.cn/java/io/io-basis.html
https://javaguide.cn/java/io/io-design-patterns.html
https://javaguide.cn/java/io/io-design-patterns.html
https://javaguide.cn/java/io/io-model.html
https://javaguide.cn/java/io/io-model.html

The essence of the question is: whether it is file reading and writing or network
sending and receiving, the smallest storage unit of information is byte, so why
are I/O stream operations divided into byte stream operations and character
stream operations?

I think there are two main reasons:

The character stream is obtained by converting bytes by the Java virtual machine, which
is a relatively time-consuming process;
If we don't know the encoding type, garbled characters may easily appear when using
byte streams.

Reference answer: Java IO design pattern summary

Reference answer: Detailed explanation of Java IO model

Syntactic sugar refers to a special syntax added to a programming language to make it
easier for programmers to develop programs. This syntax does not affect the functionality
of the programming language. To achieve the same functionality, code written using
syntactic sugar is often simpler, more concise, and easier to read.

For example, in Java for-each is a commonly used syntactic sugar, and its principle is
actually based on ordinary for loops and iterators.

Why are I/O streams divided into byte streams and
character streams?

What are the design patterns in Java IO?

What are the differences between BIO, NIO and AIO?

Syntactic sugar

What is syntactic sugar?

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 22/24

https://javaguide.cn/java/io/io-design-patterns.html
https://javaguide.cn/java/io/io-design-patterns.html
https://javaguide.cn/java/io/io-model.html
https://javaguide.cn/java/io/io-model.html

However, the JVM doesn't actually recognize syntactic sugar. For Java syntactic sugar to be
correctly executed, it must first be desugared by the compiler. This means converting it
into basic syntax recognized by the JVM during the program compilation phase. This also
indirectly demonstrates that it's the Java compiler, not the JVM, that truly supports
syntactic sugar in Java. If you look at com.sun.tools.javac.main.JavaCompiler the
source code, you'll find compile() a step called "call" desugar() ; this method is
responsible for desugaring.

The most commonly used syntactic sugars in Java include generics, automatic unpacking
and boxing, variable-length parameters, enumerations, inner classes, enhanced for loops,
try-with-resources syntax, lambda expressions, etc.

For a detailed explanation of these syntactic sugars, please see this article Java Syntactic
Sugar Detailed Explanation .

Recently Updated2025/7/27 10:31

What are the common syntactic sugars in Java?

String[] strs = {"JavaGuide", " JavaGuide", "
https://javaguide.cn/"};
for (String s : strs) {
 System.out.println(s);
}

java
1
2
3
4

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 23/24

https://javaguide.cn/java/basis/syntactic-sugar.html
https://javaguide.cn/java/basis/syntactic-sugar.html

Contributors: guide , sam , CrazyKid , WT-AHA , sleepandsheep , ljgong007 , Guide , Mr.Hope , cxhello
, qksuki , HaiBooLang

Copyright © 2025 Guide

9/19/25, 5:31 PM Java基础常见面试题总结(下) | JavaGuide

https://javaguide.cn/java/basis/java-basic-questions-03.html#java-io-流了解吗 24/24

