
A process is the execution of a program and the basic unit of a system's program execution.
Therefore, a process is dynamic. When a system runs a program, it is a process that goes
from creation to execution and then to extinction.

In Java, when we start the main function, we actually start a JVM process, and the thread
where the main function is located is a thread in this process, also called the main thread.

As shown in the figure below, by viewing the Task Manager in Windows, we can clearly see
the processes currently running in Windows (.exe file execution).

Interview special edition : Friends who are preparing for Java interviews can consider
the interview special edition: "Java Interview Guide" (very high quality, specially
designed for interviews, best used with JavaGuide).
Knowledge Planet : Technical Column/One-on-one Questions/Resume
Modification/Job Hunting Guide/Interview Check-in/Irregular Benefits, welcome to join
the JavaGuide official Knowledge Planet .

This is a small advertisement that may be useful to you

Threads

⭐️What are threads and processes?

What is a process?

Summary of Common Java
Concurrency Interview Questions
(Part 1)

Guide Java About 6908 words About 23 minutesJava Concurrency

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 1/21

https://javaguide.cn/zhuanlan/java-mian-shi-zhi-bei.html
https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/article/

A thread is similar to a process, but a smaller execution unit than a process. A process can
spawn multiple threads during its execution. Unlike processes, threads of the same type
share the process's heap and method area resources, but each thread has its own pro‐
gram counter , virtual machine stack , and local method stack . Therefore, the sys‐
tem incurs much less overhead when spawning a thread or switching between threads than
when using a process. For this reason, threads are also called lightweight processes.

Java programs are inherently multi-threaded programs. We can use JMX to see which
threads a common Java program has. The code is as follows.

What is a thread?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 2/21

The output of the above program is as follows (the output may vary. Don't worry too much
about the role of each thread below. Just know that the main thread executes the main
method):

From the above output, we can see that a Java program runs with the main thread
and multiple other threads running simultaneously .

Prior to JDK 1.2, Java threads were implemented based on Green Threads, a type of user-
level thread (user threads). This means the JVM simulated multi-threaded execution inde‐
pendently of the operating system. Because Green Threads have some limitations com‐
pared to native threads (for example, they cannot directly use operating system features
such as asynchronous I/O and can only run on a single kernel thread, unable to utilize
multiple cores), JDK 1.2 and later switched to Native Threads. This means the JVM direct‐

What is the difference between Java threads and
operating system threads?

public class MultiThread {
public static void main(String[] args) {

// 获取 Java 线程管理 MXBean
ThreadMXBean threadMXBean =

ManagementFactory.getThreadMXBean();
// 不需要获取同步的 monitor 和 synchronizer 信息，仅获取线程和线程

堆栈信息

ThreadInfo[] threadInfos =
threadMXBean.dumpAllThreads(false, false);

// 遍历线程信息，仅打印线程 ID 和线程名称信息
for (ThreadInfo threadInfo : threadInfos) {

System.out.println("[" + threadInfo.getThreadId() + "]
" + threadInfo.getThreadName());

}
}

}

[5] Attach Listener //添加事件
[4] Signal Dispatcher // 分发处理给 JVM 信号的线程
[3] Finalizer //调用对象 finalize 方法的线程
[2] Reference Handler //清除 reference 线程
[1] main //main 线程,程序入口

java
1
2
3
4
5
6
7
8
9
10
11
12

plain
1
2
3
4
5

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 3/21

ly uses the operating system's native kernel-level threads (kernel threads) to implement
Java threads, with the operating system kernel handling thread scheduling and
management.

We mentioned user threads and kernel threads above. Considering that many readers don't
know the difference between the two, here is a brief introduction:

User thread: A thread managed and scheduled by a user space program, running in user
space (specifically for application use).
Kernel thread: A thread managed and scheduled by the operating system kernel and
running in kernel space (accessible only to kernel programs).

By the way, let's briefly summarize the differences and characteristics between user
threads and kernel threads: User threads have low creation and switching costs, but cannot
take advantage of multiple cores. Kernel threads have high creation and switching costs,
but can take advantage of multiple cores.

To summarize the relationship between Java threads and operating system threads in one
sentence: the essence of current Java threads is actually operating system
threads .

The thread model is the way user threads and kernel threads are associated. There are
three common thread models:

1. One-to-one (one user thread corresponds to one kernel thread)
2. Many-to-one (multiple user threads are mapped to one kernel thread)
3. Many-to-many (multiple user threads are mapped to multiple kernel threads)

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 4/21

In mainstream operating systems like Windows and Linux, Java threads use a one-to-one
thread model, meaning that one Java thread corresponds to one kernel thread. Solaris is a
special case (it natively supports a many-to-many thread model). The HotSpot VM on
Solaris supports both many-to-many and one-to-one threading. For more details, please
refer to R's answer: Is the thread model in the JVM user-level ?

The following figure shows the Java memory area. Through the figure below, we can ex‐
plain the relationship between threads and processes from the perspective of JVM.

⭐️Please briefly describe the relationship between
threads and processes, their differences, advantages and
disadvantages?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 5/21

https://www.zhihu.com/question/23096638/answer/29617153
https://www.zhihu.com/question/23096638/answer/29617153

As can be seen from the above figure: a process can have multiple threads, and multiple
threads share the process's heap and method area (metaspace after JDK1.8) re‐
sources, but each thread has its own program counter , virtual machine stack ,
and local method stack .

In summary: Threads are smaller units of execution within a process. The biggest differ‐
ence between threads and processes is that processes are essentially independent, while
threads are not necessarily independent. Threads within the same process are likely to in‐
terfere with each other. While threads have low execution overhead, they are less con‐
ducive to resource management and conservation. Processes, on the other hand, are the
opposite.

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 6/21

Below is the expanded content of this knowledge point!

Let's think about this question: Why are the program counter , virtual machine
stack , and local method stack private to each thread? Why are the heap and method
area shared by each thread?

The program counter has the following two main functions:

1. The bytecode interpreter reads instructions in sequence by changing the program
counter, thereby implementing code flow control, such as sequential execution,
selection, looping, and exception handling.

2. In the case of multithreading, the program counter is used to record the location of the
current thread execution, so that when the thread is switched back, it can know where
the thread last ran.

It should be noted that if a native method is executed, the program counter records the un‐
defined address. Only when Java code is executed does the program counter record the ad‐
dress of the next instruction.

Therefore, the main purpose of keeping the program counter private is to restore it to
the correct execution position after thread switching .

Virtual Machine Stack: Before executing each Java method, a stack frame is created
to store information such as the local variable table, operand stack, and constant pool
references. The process from method call to completion corresponds to the process of
pushing and popping a stack frame from the Java Virtual Machine stack.
Native method stack: This stack functions very similarly to the virtual machine
stack, but differs in that the virtual machine stack serves the virtual machine's
execution of Java methods (bytecode), while the native method stack serves
the native methods used by the virtual machine. In the HotSpot virtual machine,
this stack is combined with the Java virtual machine stack.

Therefore, in order to ensure that local variables in a thread are not accessed by
other threads , the virtual machine stack and the local method stack are thread-private.

Why is the program counter private?

Why are the virtual machine stack and native method stack private?

A simple sentence to understand the heap and method area

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 7/21

The heap and method area are resources shared by all threads. The heap is the largest
piece of memory in the process, mainly used to store newly created objects (almost all ob‐
jects allocate memory here). The method area is mainly used to store loaded class informa‐
tion, constants, static variables, code compiled by the just-in-time compiler, and other
data.

Generally speaking, there are many ways to create threads, such as inheriting
Thread classes, implementing Runnable interfaces, implementing Callable interfaces,

using thread pools, using CompletableFuture classes, and so on.

However, these methods do not actually create threads. To be more precise, these are all
ways to use multithreading in Java code.

Strictly speaking, there is only one way to create a thread in Java, that is, by new
Thread().start() creating. No matter which method is used, it ultimately depends on
new Thread().start() .

For a detailed analysis of this issue, please refer to this article: Everyone says Java has
three ways to create threads! The shocking scam in concurrent programming! .

A Java thread can be in only one of the following six different states at a given moment in
its lifecycle:

NEW: Initial state, the thread is created but not called start() .
RUNNABLE: Running state, the thread is called start() to wait for running state.
BLOCKED: Blocked state, need to wait for the lock to be released.
WAITING: Waiting state, indicating that the thread needs to wait for other threads to
take some specific actions (notification or interruption).
TIME_WAITING: Timeout waiting state, which can return automatically after the
specified time instead of waiting like WAITING.
TERMINATED: Terminated state, indicating that the thread has finished running.

A thread is not fixed in a certain state during its life cycle, but switches between different
states as the code is executed.

Java thread state transition diagram (Source: Pick out errors | Three errors about thread
states in "The Art of Java Concurrency Programming"):

How to create a thread?

⭐️Talk about the life cycle and state of threads?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 8/21

https://mp.weixin.qq.com/s/NspUsyhEmKnJ-4OprRFp9g
https://mp.weixin.qq.com/s/NspUsyhEmKnJ-4OprRFp9g
https://mp.weixin.qq.com/s/NspUsyhEmKnJ-4OprRFp9g
https://mp.weixin.qq.com/s/0UTyrJpRKaKhkhHcQtXAiA
https://mp.weixin.qq.com/s/0UTyrJpRKaKhkhHcQtXAiA
https://mp.weixin.qq.com/s/0UTyrJpRKaKhkhHcQtXAiA

As shown in the figure above, after a thread is created, it is in the NEW start() state.
After calling a method, it starts running and is in the READY state. A thread in the
runnable state enters the RUNNING state after obtaining a CPU timeslice .

At the operating system level, threads have READY and RUNNING states; at the JVM
level, only the RUNNABLE state can be seen (Image source: HowToDoInJava : Java
Thread Life Cycle and Thread States), so the Java system generally refers to these two
states as the RUNNABLE state.
Why doesn't the JVM distinguish between these two states? (Excerpt from:
Why is there a sixth state for Java threads? - Dawell's answer) Current time-sharing
multi-task operating system architectures typically use so-called "time quanta" (or time
slices) for preemptive round-robin scheduling. These time slices are typically very small;
a thread can only run on the CPU for a maximum of, say, 10-20 milliseconds (in the
"Running" state), or about 0.01 seconds. After the time slice is used up, the thread is
switched off and placed at the end of the scheduling queue, awaiting rescheduling
(returning to the "Ready" state). With such rapid thread switching, distinguishing
between these two states becomes meaningless.

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 9/21

https://howtodoinjava.com/
https://howtodoinjava.com/
https://howtodoinjava.com/Java/multi-threading/Java-thread-life-cycle-and-thread-states/
https://howtodoinjava.com/Java/multi-threading/Java-thread-life-cycle-and-thread-states/
https://howtodoinjava.com/Java/multi-threading/Java-thread-life-cycle-and-thread-states/
https://www.zhihu.com/question/56494969/answer/154053599
https://www.zhihu.com/question/56494969/answer/154053599

After a thread executes wait() a method, it enters the WAITING state. A thread in
the waiting state needs to be notified by other threads before it can return to the running
state.
The TIMED_WAITING state adds a timeout to the WAIT state. For example, sleep
（long millis） a method or wait（long millis） function can put a thread into the
TIMED_WAITING state. When the timeout expires, the thread returns to the
RUNNABLE state.
When a thread enters synchronized a method/block or re-enters a method/block
wait after calling , but the lock is held by another thread, the thread enters the

BLOCKED state. notify synchronized
After executing run() the method, the thread will enter the TERMINATED state.

During execution, a thread has its own running conditions and state (also called context),
such as the program counter and stack information mentioned above. A thread will exit the
CPU-occupied state when the following conditions occur.

Actively give up the CPU, such as calling sleep() , wait() etc.
The time slice is used up because the operating system wants to prevent a thread or
process from occupying the CPU for a long time and causing other threads or processes
to starve.
A blocking system interrupt is called, such as requesting IO, and the thread is blocked.
Terminated or finished running

The first three of these scenarios involve thread switching. This means saving the current
thread's context and restoring it the next time the thread takes over the CPU. This context
is then loaded into the next thread to take over the CPU. This is known as a context
switch .

Context switching is a basic function of modern operating systems. Because it needs to
save and restore information each time, it will occupy CPU, memory and other system re‐
sources for processing, which means that there will be a certain loss of efficiency. Frequent
switching will cause overall low efficiency.

What is thread context switching?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 10/21

Common point : Both can pause the execution of a thread.

the difference :

sleep() The method does not release the lock, while wait() the method
releases the lock .
wait() Typically used for inter-thread interaction/communication, sleep() and

often used to pause execution.
wait() After the method is called, the thread will not automatically wake up. Another

thread needs to call the method on the same object notify() . notifyAll() After
sleep() the method is executed, the thread will automatically wake up, or you can use
wait(long timeout) the timeout to automatically wake up the thread.
sleep() is Thread a static local method of the class, wait() while is Object a local

method of the class. Why is it designed this way? The next question will discuss this.

wait() This allows the thread that has acquired the object lock to wait, automatically re‐
leasing the object lock held by the current thread. Each object (Object) has an object
lock. To release the object lock held by the current thread and put it into the WAITING
state, the natural operation is to operate on the corresponding object (Object) rather
than the current thread (Thread).

Similar question: Why sleep() is the method defined in Thread ?

Because sleep() it suspends the execution of the current thread, it does not involve the
object class and does not require obtaining the object lock.

This is another classic Java multithreading interview question that is often asked in inter‐
views. It is very simple, but many people struggle to answer it!

When you call the new method Thread , the thread enters the Created state. Calling the
new start() method starts a thread and puts it into the Ready state, where it can begin
running after being allocated a time slice. start() The method automatically executes the

Comparison between Thread#sleep() and Object#wait()

Why is the wait() method not defined in Thread?

Can I directly call the run method of the Thread class?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 11/21

thread's preparatory work and then executes run() the contents of the method, which is
true multithreading. However, directly executing the run() method run() treats it as a
normal method in the main thread and does not execute it in a specific thread, so it is not
multithreaded.

Summary: Calling start() the method can start the thread and make the
thread enter the ready state. Directly executing run() the method will not exe‐
cute in a multi-threaded manner.

Concurrency : Two or more jobs are executed in the same time period .
Parallel : Two or more jobs are executed at the same time .

The most critical point is whether they are executed simultaneously .

Synchronous : After a call is issued, the call cannot return until the result is obtained
and it keeps waiting.
Asynchronous : After the call is issued, there is no need to wait for the return result,
and the call returns directly.

First, let’s talk about it in general:

From a computer's perspective, threads can be compared to lightweight processes,
the smallest unit of program execution. The cost of switching and scheduling between
threads is far less than that of processes. Furthermore, the era of multi-core CPUs
means that multiple threads can run simultaneously, reducing the overhead of thread
context switching.
From the perspective of contemporary Internet development trends: today's
systems often require millions or even tens of millions of concurrent users, and multi-
threaded concurrent programming is the basis for developing high-concurrency
systems. Making good use of the multi-threading mechanism can greatly improve the
overall concurrency and performance of the system.

Multithreading

The difference between concurrency and parallelism

The difference between synchronous and asynchronous

⭐️Why use multithreading?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 12/21

Let’s delve deeper into the computer’s underlying foundation:

In the single-core era, multithreading primarily improved the efficiency of a single
process in utilizing the CPU and I/O system. For example, if only a single Java process
were running, and an I/O request was made, if only one thread in the Java process was
blocked, the entire process would be blocked. With only one CPU and one I/O device
running, the overall system efficiency would be only 50%. However, with
multithreading, if one thread is blocked by I/O, the other threads can continue to use
the CPU, thereby improving the overall efficiency of the Java process in utilizing system
resources.
Multi-core Era : In the multi-core era, multithreading primarily aims to improve a
process's ability to utilize multiple CPU cores. For example, if we use only one thread to
perform a complex computation, only one core will be utilized, regardless of the number
of CPU cores in the system. However, by creating multiple threads, these threads can be
mapped to multiple underlying CPU cores for execution. Without resource competition
among multiple threads within a task, task execution efficiency can be significantly
improved, reaching a value approximately equal to (single-core execution time/number
of CPU cores).

Single-core CPUs support Java multithreading. The operating system allocates CPU time
to different threads through a round-robin system. Although a single-core CPU can only
execute one task at a time, rapidly switching between multiple threads allows the user to
experience multiple tasks simultaneously.

Incidentally, let me mention here the thread scheduling method used by Java.

The operating system manages the execution of multiple threads mainly through two
thread scheduling methods:

Preemptive Scheduling : The operating system decides when to pause the currently
running thread and switch execution to another. This switch is typically triggered by a
system clock interrupt (time slice rotation) or other high-priority events (such as the
completion of an I/O operation). This approach incurs context switching overhead, but
it offers better fairness, better CPU resource utilization, and less blocking.
Cooperative Scheduling : After a thread completes execution, it proactively notifies
the system to switch to another thread. This approach can reduce the performance
overhead of context switching, but it suffers from poor fairness and is prone to blocking.

⭐️Does a single-core CPU support Java multithreading?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 13/21

Java uses preemptive thread scheduling. That is, the JVM itself doesn't schedule threads,
but delegates this to the operating system. The operating system typically schedules
threads based on thread priority and time slices, with higher-priority threads typically re‐
ceiving more CPU time slices.

Whether a single-core CPU can run multiple threads simultaneously efficiently depends on
the type of thread and the nature of the task. Generally speaking, there are two types of
threads:

1. CPU-intensive : CPU-intensive threads mainly perform calculations and logic
processing, and require a large amount of CPU resources.

2. IO-intensive : IO-intensive threads mainly perform input and output operations, such
as reading and writing files, network communication, etc., and need to wait for the
response of IO devices without taking up too many CPU resources.

On a single-core CPU, only one thread can run at a time; other threads must wait for CPU
time slices. If the thread is CPU-bound, running multiple threads simultaneously will re‐
sult in frequent thread switching, increasing system overhead and reducing efficiency. If
the thread is I/O-bound, running multiple threads simultaneously can utilize the CPU's
idle time while waiting for I/O, improving efficiency.

Therefore, for a single-core CPU, if the task is CPU-intensive, then running many threads
will affect efficiency; if the task is I/O-intensive, then running many threads will improve
efficiency. Of course, the "many" here should be moderate and should not exceed the upper
limit of the system's tolerance.

The purpose of concurrent programming is to improve the execution efficiency of the pro‐
gram and thus increase the running speed of the program. However, concurrent program‐
ming does not always increase the running speed of the program, and concurrent program‐
ming may encounter many problems, such as memory leaks, deadlocks, thread insecurity,
etc.

⭐️Will running multiple threads on a single-core CPU be
efficient?

What problems might arise from using multithreading?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 14/21

Thread safety and unsafety describe whether the correctness and consistency of access to
the same data can be guaranteed in a multi-threaded environment.

Thread safety means that in a multi-threaded environment, for the same data, no matter
how many threads access it simultaneously, the correctness and consistency of the data
can be guaranteed.
Thread unsafe means that in a multi-threaded environment, when multiple threads
access the same data at the same time, data may be confused, erroneous, or lost.

Thread deadlock describes a situation where multiple threads are blocked at the same
time, one or all of them waiting for a resource to be released. Because the threads are
blocked indefinitely, it is impossible for the program to terminate normally.

As shown in the figure below, thread A holds resource 2, and thread B holds resource 1.
They both want to apply for each other's resources at the same time, so the two threads will
wait for each other and enter a deadlock state.

The following example illustrates thread deadlock. The code simulates the deadlock situa‐
tion in the figure above (the code comes from "The Beauty of Concurrency Programming"):

How to understand thread safety and unsafety?

⭐️Deadlock

What is thread deadlock?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 15/21

public class DeadLockDemo {
 private static Object resource1 = new Object();//资源 1
 private static Object resource2 = new Object();//资源 2

 public static void main(String[] args) {
 new Thread(() -> {
 synchronized (resource1) {
 System.out.println(Thread.currentThread() + "get
resource1");
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread() +
"waiting get resource2");
 synchronized (resource2) {
 System.out.println(Thread.currentThread() +
"get resource2");
 }
 }
 }, "线程 1").start();

 new Thread(() -> {
 synchronized (resource2) {
 System.out.println(Thread.currentThread() + "get
resource2");
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread() +
"waiting get resource1");
 synchronized (resource1) {
 System.out.println(Thread.currentThread() +
"get resource1");
 }
 }
 }, "线程 2").start();
 }
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 16/21

Output

Thread A synchronized (resource1) acquires resource1 the monitor lock of resource2
through , and then Thread.sleep(1000); puts thread A to sleep for 1 second through , al‐
lowing thread B to execute and acquire the monitor lock of resource2. After sleeping,
thread A and thread B both attempt to request each other's resources, and the two threads
are stuck in a state of waiting for each other, which creates a deadlock.

The above example meets the four necessary conditions for deadlock:

1. Mutual exclusion condition : The resource is occupied by only one thread at any one
time.

2. Request and hold condition : When a thread is blocked due to requesting resources,
it holds on to the resources it has obtained.

3. Non-deprivation condition : The resources obtained by the thread cannot be
forcibly deprived by other threads before they are used up, and the resources will be
released only after the thread has finished using them.

4. Circular waiting condition : A circular waiting resource relationship is formed
between several threads, with each thread connected head to tail.

Use commands like jmap , , jstack and so on to check the JVM thread stack and heap
memory status. If a deadlock occurs, jstack the output of will typically contain Found
one Java-level deadlock: the message "deadlock" followed by information about the
deadlocked threads. In actual projects, you can also use commands top like , df ,
free and so on to check basic operating system status. Deadlocks can cause excessive

consumption of resources like CPU and memory.
Use tools such as VisualVM and JConsole for troubleshooting.

Here we take JConsole tool as an example for demonstration.

First, we need to find the bin directory of JDK, find jconsole and double-click to open it.

How to detect deadlock?

Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1

plain
1
2
3
4

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 17/21

For MAC users, you can /usr/libexec/java_home -V check the JDK installation directo‐
ry and open it after finding it open . + 文件夹地址 . For example, the path of a local JDK
is:

After opening jconsole, connect to the corresponding program, then enter the thread inter‐
face and select detect deadlock!

 open . /Users/guide/Library/Java/JavaVirtualMachines/corretto-
1.8.0_252/Contents/Home

bash
1

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 18/21

How to prevent deadlock? Just destroy the necessary conditions for deadlock:

1. Destroy request and hold conditions : Apply for all resources at once.

How to prevent and avoid thread deadlock?

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 19/21

2. Destruction without deprivation conditions : When a thread that occupies some
resources further applies for other resources, if it fails to apply, it can actively release the
resources it occupies.

3. Breaking the circular wait condition : This is prevented by applying for resources
in order. Apply for resources in a certain order and release them in the reverse order.
This breaks the circular wait condition.

How to avoid deadlock?

Avoiding deadlock means using algorithms (such as the banker's algorithm) to calculate
and evaluate resource allocation when allocating resources so that it enters a safe state.

A safe state means that the system can allocate resources to each thread according to a
certain thread advancement sequence (P1, P2, P3, ...Pn) until each thread's maximum
resource demand is met and each thread can successfully complete. <P1、P2、
P3.....Pn> This sequence is called a safe sequence.

We modify the code of thread 2 to the following so that deadlock will not occur.

Output:

new Thread(() -> {
 synchronized (resource1) {
 System.out.println(Thread.currentThread() + "get
resource1");
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread() +
"waiting get resource2");
 synchronized (resource2) {
 System.out.println(Thread.currentThread() +
"get resource2");
 }
 }
 }, "线程 2").start();

1
2
3
4
5
6
7
8
9
10
11
12
13
14

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 20/21

Let's analyze why the above code avoids deadlock.

Thread 1 first acquires the monitor lock for resource 1, but thread 2 is unable to obtain it.
Thread 1 then attempts to acquire the monitor lock for resource 2 and succeeds. Thread 1
then releases the monitor locks for both resource 1 and resource 2, allowing thread 2 to ac‐
quire and proceed. This breaks the circular wait condition and avoids deadlock.

Recently Updated2025/8/7 15:13
Contributors: Snailclimb , MckayRen , SnailClimb , dongzl , Joe , yidasanqian , Rustin-Liu , Ryze-Zhao ,

Kou Shuang , tangdh , shuang.kou , liwenguang , huangshangi , guide , georgedage , VinterHe ,
18986293910 , Raxcl , Guide , Mr.Hope , DaZuiZui , JunQiu , FengHaoJ , firgk , HaiBooLang , Machisk

Copyright © 2025 Guide

Thread[线程 1,5,main]get resource1
Thread[线程 1,5,main]waiting get resource2
Thread[线程 1,5,main]get resource2
Thread[线程 2,5,main]get resource1
Thread[线程 2,5,main]waiting get resource2
Thread[线程 2,5,main]get resource2

Process finished with exit code 0

plain
1
2
3
4
5
6
7
8

9/21/25, 9:52 AM Summary of Common Java Concurrency Interview Questions (Part 1) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-01.html#如何预防和避免线程死锁 21/21

