
There are many issues related to JMM (Java Memory Model), and they are also quite
important, so I have written a separate article to summarize the knowledge points and
issues related to JMM: Detailed Explanation of JMM (Java Memory Model) .

In Java, volatile the keyword can ensure the visibility of the variable. If we declare a
variable as volatile , this instructs the JVM that this variable is shared and unstable,
and each time it is used, it must be read from the main memory.

⭐️JMM (Java Memory Model)

⭐️volatile keyword

How to ensure variable visibility?

Summary of Common Java
Concurrency Interview Questions
(Part 2)

Guide Java About 11,469 words About 38 minutesJava Concurrency

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 1/36

https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/java/concurrent/jmm.html
https://javaguide.cn/java/concurrent/jmm.html
https://javaguide.cn/article/

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 2/36

volatile The keyword is not specific to Java; it also exists in C. Its original meaning was
to disable the CPU cache. If we volatile modify a variable with , it instructs the compiler
that the variable is shared and unstable, requiring it to be read from main memory each
time it is used.

volatile Keywords can guarantee data visibility, but not data atomicity.
synchronized Keywords can guarantee both.

In Java, volatile the keyword not only ensures variable visibility, but also
plays an important role in preventing JVM instruction reordering. If a variable
is declared as volatile , when reading or writing this variable, a specific memory
barrier will be inserted to prevent instruction reordering.

In Java, Unsafe classes provide three memory barrier-related methods out of the box,
shielding the underlying differences in the operating system:

How to disable instruction reordering?

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 3/36

Theoretically, you can achieve volatile the same effect as disabling reordering through
these three methods, but it will be more troublesome.

Below I will use a common interview question as an example to explain volatile the
effect of the keyword prohibiting instruction reordering.

During an interview, the interviewer will often ask: "Do you understand the singleton
pattern? Write it down for me! Explain to me how the double-checked locking method
implements the singleton pattern!"

Double-checked locking implements object singleton (thread-safe) :

uniqueInstance volatile It is also necessary to use keyword modification.
uniqueInstance = new Singleton(); This code is actually executed in three steps:

1. uniqueInstance Allocate memory space for
2. initialization uniqueInstance

public native void loadFence();
public native void storeFence();
public native void fullFence();

public class Singleton {

 private volatile static Singleton uniqueInstance;

 private Singleton() {
 }

 public static Singleton getUniqueInstance() {
 //
 if (uniqueInstance == null) {
 //
 synchronized (Singleton.class) {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 }
 }
 return uniqueInstance;
 }
}

java
1
2
3

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 4/36

3. Point uniqueInstance to the allocated memory address

However, due to the JVM's instruction reordering, the execution order may become 1 -> 3 -
> 2. This instruction reordering is not a problem in a single-threaded environment, but in a
multi-threaded environment, it may cause one thread to obtain an uninitialized instance.
For example, thread T1 executes 1 and 3. At this time, thread T2 calls
getUniqueInstance () and finds uniqueInstance that is not null, so it returns
uniqueInstance , but at this time uniqueInstance is not initialized.

volatile Keywords can ensure the visibility of variables, but cannot
guarantee that operations on variables are atomic.

We can prove this with the following code:

Can volatile guarantee atomicity?

/**
 * JavaGuide " " Java
 *
 * @author Guide
 * @date 2022/08/03 13:40
 **/
public class VolatileAtomicityDemo {
 public volatile static int inc = 0;

 public void increase() {
 inc++;
 }

 public static void main(String[] args) throws
InterruptedException {
 ExecutorService threadPool =
Executors.newFixedThreadPool(5);
 VolatileAtomicityDemo volatileAtomicityDemo = new
VolatileAtomicityDemo();
 for (int i = 0; i < 5; i++) {
 threadPool.execute(() -> {
 for (int j = 0; j < 500; j++) {
 volatileAtomicityDemo.increase();
 }
 });
 }

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 5/36

Under normal circumstances, running the above code should output 2500 . But after you
actually run the above code, you will find that the output result is less than 2500 .

Why does this happen? Isn't it said that volatile the visibility of variables can be
guaranteed?

In other words, if the atomicity of the operation volatile is guaranteed , after each
thread increments the variable, the other threads can immediately see the modified value.
If five threads each perform 500 operations, the final value of inc should be 5 * 500 =
2500. inc++ inc

Many people mistakenly believe that the increment operation inc++ is atomic. In fact,
inc++ it is a compound operation consisting of three steps:

1. Read the value of inc.
2. Add 1 to inc.
3. Write the value of inc back to memory.

volatile There is no guarantee that these three operations are atomic, which may lead to
the following situation:

1. Thread 1 inc reads , but does not modify it. Thread 2 reads inc the value of and
modifies it (+1), then inc writes the value of back to memory.

2. After thread 2 completes the operation, thread 1 inc modifies the value of (+1) and
then inc writes the value of back to the memory.

This results in the two threads each inc performing a self-increment operation on ,
inc but actually only increasing 1.

In fact, if you want to ensure that the above code runs correctly, it is very simple, you can
use synchronized , Lock or AtomicInteger .

Use synchronized Improvement:

 // 1.5
 Thread.sleep(1500);
 System.out.println(inc);
 threadPool.shutdown();
 }
}

public synchronized void increase() {
 inc++;

27
28
29

java
1
2

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 6/36

Use AtomicInteger Improvement:

Use ReentrantLock Improvement:

Pessimistic locking always assumes the worst-case scenario, assuming that a problem will
occur every time a shared resource is accessed (such as shared data being modified).
Therefore, a lock is acquired every time a resource is acquired. This blocks other threads
from accessing the resource until the lock is released by the previous owner. In other
words, a shared resource is only available to one thread at a time, blocking
other threads until the lock is released. Once the shared resource is available,
the resource is transferred to another thread .

synchronized Exclusive locks like those in Java ReentrantLock are the implementation
of pessimistic locking ideas.

⭐️Optimistic locking and pessimistic locking

What is pessimistic locking?

}

public AtomicInteger inc = new AtomicInteger();

public void increase() {
 inc.getAndIncrement();
}

Lock lock = new ReentrantLock();
public void increase() {
 lock.lock();
 try {
 inc++;
 } finally {
 lock.unlock();
 }
}

3

java
1
2
3
4
5

java
1
2
3
4
5
6
7
8
9

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 7/36

In high-concurrency scenarios, intense lock contention can cause thread blocking. A large
number of blocked threads can lead to context switching, increasing system performance
overhead. Furthermore, pessimistic locking can lead to deadlock, impacting the normal
operation of the code.

Optimistic locking always assumes the best case scenario, assuming that there will be no
problems each time a shared resource is accessed. Threads can execute continuously
without locking or waiting. They only verify whether the corresponding resource (that is,
data) has been modified by other threads when submitting modifications (the specific
method can use the version number mechanism or the CAS algorithm).

In Java, java.util.concurrent.atomic the atomic variable classes in the package (for
example AtomicInteger ,) are implemented LongAdder using CAS, an
implementation method of optimistic locking.

What is optimistic locking?

public void performSynchronisedTask() {
 synchronized (this) {
 //
 }
}

private Lock lock = new ReentrantLock();
lock.lock();
try {
 //
} finally {
 lock.unlock();
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 8/36

In high-concurrency scenarios, optimistic locking, compared to pessimistic locking,
eliminates thread blocking caused by lock contention and avoids deadlock issues, often
resulting in superior performance. However, if conflicts frequently occur (e.g., when writes
account for a high percentage of transactions), frequent failures and retries can
significantly impact performance and cause CPU usage to spike.

However, the problem of a large number of failed retries can also be solved. As we
mentioned earlier, LongAdder the method of exchanging space for time solves this
problem.

In theory:

Pessimistic locking is typically used in write-heavy scenarios (high-contention
scenarios) to prevent frequent failures and retries from impacting performance. The
overhead of pessimistic locking is fixed. However, if optimistic locking solves the
problem of frequent failures and retries (for example LongAdder), then it can be
considered. The decision depends on the actual situation.
Optimistic locking is typically used in scenarios with low write activity (read-heavy
scenarios with low contention) to avoid frequent locking that can impact performance.
However, optimistic locking primarily targets single shared variables (see
java.util.concurrent.atomic the atomic variable class in the package).

Optimistic locking is generally implemented using a version number mechanism or a CAS
algorithm. The CAS algorithm is relatively more common and requires special attention
here.

Typically, a data version number version field is added to the data table to indicate the
number of times the data has been modified. Each time the data is modified, version the
value is incremented by one. When thread A updates a data value, it reads version the

How to implement optimistic locking?

Version number mechanism

// LongAdder AtomicInteger AtomicLong
//
LongAdder sum = new LongAdder();
sum.increment();

java
1
2
3
4

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 9/36

value simultaneously with the data. When submitting the update, the update is only
performed if the previously read version value version matches the value in the current
database. Otherwise, the update is retried until the update succeeds.

Let's take a simple example : suppose there is a version field in the account
information table in the database, and the current value is 1; and the current account
balance field (balance) is $100.

1. Operator A now reads it out (version =1) and deducts $50 from his account balance
($100 - $50).

2. During operator A's operation, operator B also reads this user information (
version =1) and deducts $20 from his account balance ($100-$20).

3. Operator A completes the modification and submits the data version number (
version =1) and the account balance after deduction (balance =$50) to the database

for update. At this time, since the submitted data version is equal to the current version
of the database record, the data is updated and the database record version is updated
to 2.

4. Operator B completes the operation and version attempts to submit data (=$80) to
the database with the version number (=1) balance . However, when comparing the
database record versions, it is found that the data version number submitted by
operator B is 1, and the current version recorded in the database is also 2. This does not
meet the optimistic locking strategy of "the submitted version must be equal to the
current version to perform the update". Therefore, operator B's submission is rejected.

This prevents operator B from version overwriting operator A's operation results with
the results modified based on old data = 1.

CAS (Compare And Swap) is used to implement optimistic locking and is widely used in
various frameworks. The idea behind CAS is simple: it compares an expected value with
the value of the variable to be updated, and only updates the variable if the two values ​​are
equal.

CAS is an atomic operation that relies on a CPU atomic instruction at the bottom layer.

An atomic operation is the smallest indivisible operation, which means that once an
operation starts, it cannot be interrupted until it is completed.

CAS involves three operands:

V : variable value to be updated (Var)

CAS algorithm

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 10/36

E : Expected
N : New value to be written (New)

If and only if the value of V is equal to E, CAS atomically updates the value of V with the
new value N. If not, it means that another thread has updated V, and the current thread
abandons the update.

Let's take a simple example : thread A wants to modify the value of variable i to 6, and
the original value of i is 1 (V = 1, E = 1, N = 6, assuming there is no ABA problem).

1. i is compared with 1. If they are equal, it means that it has not been modified by other
threads and can be set to 6.

2. i is compared with 1. If they are not equal, it means that it has been modified by other
threads. The current thread gives up the update and the CAS operation fails.

When multiple threads use CAS to operate a variable at the same time, only one will win
and update successfully, and the rest will fail. However, the failed thread will not be
suspended, but will only be informed of the failure and allowed to try again. Of course, the
failed thread is also allowed to give up the operation.

The Java language does not directly implement CAS. CAS-related implementations are
implemented through C++ inline assembly (JNI calls). Therefore, the specific
implementation of CAS is related to both the operating system and the CPU.

sun.misc The classes under the package Unsafe provide
compareAndSwapObject methods to implement CAS operations on types of , ,

and compareAndSwapInt compareAndSwapLong Object int long

/**
 * CAS
 * @param o field
 * @param offset field
 * @param expected
 * @param update
 * @return true | false
 */
public final native boolean compareAndSwapObject(Object o, long
offset, Object expected, Object update);

java
1
2
3
4
5
6
7
8
9
10
11
12
13

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 11/36

For Unsafe a detailed introduction to the class, see this article: Detailed Explanation of
Java Magic Class Unsafe - JavaGuide - 2022 .

In Java, a key class for implementing CAS (Compare-And-Swap) operations is Unsafe .

Unsafe This class sun.misc , located in the package Unsafe, provides low-level, unsafe
operations. Due to its powerful functionality and potential dangers, it is typically used
internally within the JVM or in libraries that require extremely high performance and low-
level access. It is not recommended for general developers to use in applications. For
Unsafe a detailed introduction to this class, please read this article: 📌 A Detailed

Explanation of the Java Magic Class Unsafe .

sun.misc The classes under the package Unsafe provide
compareAndSwapObject methods to implement CAS operations on types of

: compareAndSwapInt compareAndSwapLong Object int long

How is CAS implemented in Java?

public final native boolean compareAndSwapInt(Object o, long
offset, int expected,int update);

public final native boolean compareAndSwapLong(Object o, long
offset, long expected, long update);

/**
 *
 *
 * @param o
 * @param offset
 * @param expected
 * @param x
 * @return true false
 */
boolean compareAndSwapObject(Object o, long offset, Object
expected, Object x);

/**
 * int
 */
boolean compareAndSwapInt(Object o, long offset, int expected, int
x);

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 12/36

https://javaguide.cn/java/basis/unsafe.html
https://javaguide.cn/java/basis/unsafe.html
https://javaguide.cn/java/basis/unsafe.html
https://javaguide.cn/java/basis/unsafe.html
https://javaguide.cn/java/basis/unsafe.html
https://javaguide.cn/java/basis/unsafe.html

Unsafe CAS methods in classes are native methods. native The keyword indicates
that these methods are implemented in native code (usually C or C++) rather than Java.
These methods directly call underlying hardware instructions to perform atomic
operations. In other words, Java doesn't implement CAS directly in Java, but rather in C++
inline assembly (via JNI calls). Therefore, the specific implementation of CAS is closely
related to the operating system and CPU.

java.util.concurrent.atomic The package provides some classes for atomic
operations. These classes use the underlying atomic instructions to ensure that operations
in a multi-threaded environment are thread-safe.

For the introduction and use of these Atomic atomic classes, you can read this article:
Atomic Atomic Class Summary .

AtomicInteger It is one of Java's atomic classes, mainly used to int perform atomic
operations on variables of type . It uses Unsafe the low-level atomic operation methods
provided by the class to achieve lock-free thread safety.

/**
 * long
 */
boolean compareAndSwapLong(Object o, long offset, long expected,
long x);

18
19
20

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 13/36

https://javaguide.cn/java/concurrent/atomic-classes.html
https://javaguide.cn/java/concurrent/atomic-classes.html

Next, we will explain how Java uses class methods to implement atomic operations by
interpreting AtomicInteger the core source code (JDK1.8) . Unsafe

AtomicInteger The core source code is as follows:

Unsafe#getAndAddInt Source code:

// Unsafe
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;

static {
 try {
 // “value” AtomicInteger
 valueOffset = unsafe.objectFieldOffset
 (AtomicInteger.class.getDeclaredField("value"));
 } catch (Exception ex) { throw new Error(ex); }
}
// “value”
private volatile int value;

// newValue
// Unsafe#compareAndSwapInt CAS
public final boolean compareAndSet(int expect, int update) {
 return unsafe.compareAndSwapInt(this, valueOffset, expect,
update);
}

// delta
public final int getAndAdd(int delta) {
 return unsafe.getAndAddInt(this, valueOffset, delta);
}

// 1
// Unsafe#getAndAddInt CAS
public final int getAndIncrement() {
 return unsafe.getAndAddInt(this, valueOffset, 1);
}

// 1
public final int getAndDecrement() {
 return unsafe.getAndAddInt(this, valueOffset, -1);
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 14/36

As you can see, a loop getAndAddInt is used do-while : if compareAndSwapInt an
operation fails, it will be retried until it succeeds. That is, getAndAddInt the method will
compareAndSwapInt try to update value the value of using the method. If the update

fails (the current value has been modified by another thread during this time), it will re-
obtain the current value and try to update it again until the operation succeeds.

Because CAS operations may fail due to concurrency conflicts, they are often while used
in conjunction with loops to repeatedly retry after failure until the operation succeeds. This
is the spin lock mechanism .

The ABA problem is the most common problem of the CAS algorithm.

If a variable V is initially read with value A and then checked to be still A when being
assigned a value, can we conclude that its value has not been modified by another thread?
Obviously not, because during this time, its value could be changed to another value and
then back to A. In this case, the CAS operation would mistakenly believe that it had never
been modified. This problem is known as the "ABA" problem of CAS operations.

The solution to the ABA problem is to prepend a version number or timestamp to the
variable . The __register__ class, available since JDK 1.5 AtomicStampedReference , is
designed to address the ABA problem. Its __register__ compareAndSet() method first
checks whether the current reference is equal to the expected reference and whether the
current flag is equal to the expected flag. If so, it atomically sets the reference and flag to
the given updated value.

What are the problems with the CAS algorithm?

ABA Issues

//
public final int getAndAddInt(Object o, long offset, int delta) {
 int v;
 do {
 // volatile o offset
 v = getIntVolatile(o, offset);
 } while (!compareAndSwapInt(o, offset, v, v + delta));
 //
 return v;
}

java
1
2
3
4
5
6
7
8
9
10

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 15/36

CAS often uses spin operations to perform retries, which means that if the retries fail, the
retries will continue in a loop until they succeed. If the retries fail for a long time, it will
cause a lot of CPU overhead.

If the JVM can support the instructions provided by the processor pause , the efficiency of
the spin operation will be improved. pause The instructions have two important
functions:

1. Delay pipeline execution instructions : pause This instruction can delay the
execution of instructions, thereby reducing CPU resource consumption. The specific
delay time depends on the processor implementation version. On some processors, the
delay time may be zero.

2. Avoid memory order conflicts : When exiting a loop, pause the instruction can
prevent the CPU pipeline from being flushed due to memory order conflicts, thereby
improving the CPU's execution efficiency.

CAS operations only work on a single shared variable. When multiple shared variables
need to be manipulated, CAS becomes ineffective. However, starting with JDK 1.5, Java
provides AtomicReference classes that enable atomicity between referenced objects. By
encapsulating multiple variables in a single object, we can use AtomicReference CAS
operations.

In addition AtomicReference to this method, locking can also be used to ensure it.

Long cycle time and high overhead

Only one atomic operation of a shared variable can be guaranteed

public boolean compareAndSet(V expectedReference,
 V newReference,
 int expectedStamp,
 int newStamp) {
 Pair<V> current = pair;
 return
 expectedReference == current.reference &&
 expectedStamp == current.stamp &&
 ((newReference == current.reference &&
 newStamp == current.stamp) ||
 casPair(current, Pair.of(newReference, newStamp)));
}

java
1
2
3
4
5
6
7
8
9
10
11
12

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 16/36

synchronized It is a keyword in Java, which means synchronization when translated into
Chinese. It mainly solves the synchronization of resource access between multiple threads,
and can ensure that the method or code block modified by it can only be executed by one
thread at any time.

In early Java versions, monitor locks synchronized were considered heavyweight and
inefficient. This was because monitor locks relied on the underlying operating system
Mutex Lock for implementation, and Java threads were mapped to native operating

system threads. Suspending or waking a thread required the assistance of the operating
system, which, in turn, required transitions from user mode to kernel mode. This state
transition took a relatively long time and was costly.

However, Java 6 and later synchronized introduced numerous optimizations, such as
spin locks, adaptive spin locks, lock elision, lock coarsening, biased locks, and lightweight
locks, to reduce the overhead of locking operations. These optimizations have
synchronized significantly improved locking efficiency. Therefore, synchronized they

can still be used in real-world projects, including extensively in the JDK source code and
many open source frameworks synchronized .

A further point about biased locking: Because biased locking increases JVM complexity
and doesn't necessarily improve performance for all applications, it was disabled by default
in JDK 15 (though it can still be -XX:+UseBiasedLocking enabled using). In JDK 18,
biased locking has been completely deprecated (it can no longer be enabled from the
command line).

synchronized There are three main ways to use keywords:

1. Decorating instance methods
2. Modifying static methods
3. Decorating code blocks

1. Modify instance method (lock current object instance)

synchronized keyword

What is synchronized? What is it used for?

How to use synchronized?

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 17/36

Lock the current object instance and obtain the lock of the current object
instance before entering the synchronization code .

2. Modify static methods (lock the current class)

Locking the current class will affect all object instances of the class. The lock of the
current class must be obtained before entering the synchronization code .

This is because static members do not belong to any instance object, but to the entire class.
They are independent of the specific instance of the class and are shared by all instances of
the class.

Are calls between static synchronized and non-static methods mutually exclusive? They
are not! If thread A calls a non-static method of an instance object, and thread B calls a
static method of the class to which the instance object belongs, both are allowed and no
mutual exclusion occurs. This is because the lock occupied by accessing a static method is
the lock of the current class, while the lock occupied by accessing a non-static method is
the lock of the current instance
object. synchronized synchronized synchronized synchronized synchronized

3. Modify the code block (lock the specified object/class)

Lock the object/class specified in the brackets:

synchronized(object) Indicates that the lock of the given object must be
obtained before entering the synchronized code block .
synchronized(.class) Indicates that the lock of the given Class must be

obtained before entering the synchronized code block

Summarize:

synchronized void method() {
 //
}

synchronized static void method() {
 //
}

synchronized(this) {
 //
}

java
1
2
3

java
1
2
3

java
1
2
3

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 18/36

synchronized Keywords added to static static methods and
synchronized(class) code blocks are used to lock the Class class;
synchronized The keyword is added to the instance method to lock the object

instance;
Try not to use it synchronized(String a) because the string constant pool in JVM has
a cache function.

Constructors cannot be modified with the synchronized keyword. However, synchronized
code blocks can be used inside constructors.

In addition, the construction method itself is thread-safe, but if the construction method
involves operations on shared resources, appropriate synchronization measures need to be
taken to ensure the thread safety of the entire construction process.

The underlying principle of the synchronized keyword belongs to the JVM level.

Use the JDK's built-in javap command to view SynchronizedDemo the relevant bytecode
information of the class: first switch to the corresponding directory of the class and execute
javac SynchronizedDemo.java the command to generate the compiled .class file, and

then execute it javap -c -s -v -l SynchronizedDemo.class .

Can the constructor be modified with synchronized?

⭐️Do you understand the underlying principles of
synchronized?

The case of synchronized statement blocks

public class SynchronizedDemo {
 public void method() {
 synchronized (this) {
 System.out.println("synchronized ");
 }
 }
}

java
1
2
3
4
5
6
7

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 19/36

From the above we can see that synchronized the implementation of the
synchronized statement block uses the monitorenter and
monitorexit instructions, where monitorenter the instruction points to the

starting position of the synchronized code block and monitorexit the
instruction indicates the end position of the synchronized code block.

The above bytecode contains one monitorenter instruction and two
monitorexit instructions, which are to ensure that the lock can be released correctly in

both cases when the synchronized code block code is executed normally and when an
exception occurs.

When executing monitorenter the instruction, the thread attempts to acquire the lock,
that is, to obtain ownership of the object monitor . monitor

In the Java Virtual Machine (HotSpot), Monitor is implemented in C++ and is
implemented by ObjectMonitor . Each object has an ObjectMonitor object built into
it.
In addition, wait/notify the wait method also depends on monitor the object, which
is why the wait method can only be called in a synchronized block or method
wait/notify , otherwise java.lang.IllegalMonitorStateException an exception

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 20/36

https://github.com/openjdk-mirror/jdk7u-hotspot/blob/50bdefc3afe944ca74c3093e7448d6b889cd20d1/src/share/vm/runtime/objectMonitor.cpp
https://github.com/openjdk-mirror/jdk7u-hotspot/blob/50bdefc3afe944ca74c3093e7448d6b889cd20d1/src/share/vm/runtime/objectMonitor.cpp

will be thrown.

During execution monitorenter , an attempt is made to acquire the lock of the object. If
the lock counter is 0, it means that the lock can be acquired. After acquisition, the lock
counter is set to 1, that is, plus 1.

The owner thread of the object lock can execute monitorexit the instruction to release
the lock. After executing monitorexit the instruction, the lock counter is set to 0,
indicating that the lock is released and other threads can try to acquire the lock.

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 21/36

If the object lock acquisition fails, the current thread will be blocked and wait until the lock
is released by another thread.

The case of synchronized modified methods

public class SynchronizedDemo2 {
 public synchronized void method() {
 System.out.println("synchronized ");
 }
}

java
1
2
3
4
5

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 22/36

synchronized The modified method does not have monitorenter the ___access_ flag
or monitorexit the ___access_ flag. Instead, it has ACC_SYNCHRONIZED the ___access_
flag, which indicates that the method is a synchronized method. The JVM uses this
ACC_SYNCHRONIZED ___access_ flag to identify whether a method is declared as a

synchronized method and executes the corresponding synchronization call.

If it is an instance method, the JVM will try to acquire the lock of the instance object. If it is
a static method, the JVM will try to acquire the lock of the current class.

synchronized The implementation of the synchronized statement block uses the
monitorenter and monitorexit instructions, where monitorenter the instruction

points to the start position of the synchronized code block and monitorexit the
instruction indicates the end position of the synchronized code block.

synchronized The modified method does not have monitorenter the directive and
monitorexit the directive. Instead, it has ACC_SYNCHRONIZED the identifier, which

indicates that the method is a synchronized method.

However, the essence of both is to obtain the object monitor monitor.

Related recommendations: Things about Java locks and threads - Youzan Technology
Team .

🧗🏻 Advanced: Those who have more time to learn can take the time to study object
monitors in detail monitor .

Summarize

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 23/36

https://tech.youzan.com/javasuo-yu-xian-cheng-de-na-xie-shi/
https://tech.youzan.com/javasuo-yu-xian-cheng-de-na-xie-shi/
https://tech.youzan.com/javasuo-yu-xian-cheng-de-na-xie-shi/

After Java 6, synchronized a large number of optimization technologies such as spin
locks, adaptive spin locks, lock elimination, lock coarsening, biased locks, and lightweight
locks were introduced to reduce the overhead of lock operations. These optimizations have
synchronized greatly improved the efficiency of locks (in JDK18, biased locks have been

completely abandoned, as mentioned earlier).

Locks exist in four main states: unlocked, biased, lightweight, and heavyweight. These
states gradually escalate as competition intensifies. Note that locks can be upgraded but
not downgraded. This strategy improves the efficiency of acquiring and releasing locks.

synchronized Lock escalation is a relatively complex process and is rarely asked in
interviews. If you want to learn more about it, you can read this article: A Brief Analysis of
the Principles and Implementation of Synchronized Lock Escalation .

Open JDK official statement: JEP 374: Deprecate and Disable Biased Locking

In JDK 15, biased locking is disabled by default (you can still -
XX:+UseBiasedLocking enable biased locking using). In JDK 18, biased locking has been
completely deprecated (it cannot be enabled from the command line).

In the official statement, there are two main reasons:

Performance gains are not obvious:

Biased locking is an optimization technology of the HotSpot virtual machine that can
improve the performance of single-threaded access to synchronized code blocks.

 Java API HashTable Vector
 synchronized

 JDK ConcurrentHashMap

What optimizations have been made to the underlying
synchronized implementation since JDK 1.6? Do you
understand the principles of lock escalation?

Why is synchronized biased lock abandoned?

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 24/36

https://www.cnblogs.com/star95/p/17542850.html
https://www.cnblogs.com/star95/p/17542850.html
https://www.cnblogs.com/star95/p/17542850.html
https://openjdk.org/jeps/374
https://openjdk.org/jeps/374

safe point

JVM

 HotSpot
 OpenJDK

synchronized volatile

volatile volatile
synchronized volatile synchronized

volatile synchronized

volatile synchronized

ReentrantLock Lock synchronized
ReentrantLock

ReentrantLock Sync Sync AQS
AbstractQueuedSynchronizer Sync

Sync FairSync NonfairSync

⭐️synchronized volatile

ReentrantLock

ReentrantLock

public class ReentrantLock implements Lock, java.io.Serializable {}java
1

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 25/36

ReentrantLock

 ReentrantLock AQS AQS
 AQS

 :

⭐️synchronized ReentrantLock

// boolean true false
public ReentrantLock(boolean fair) {
 sync = fair ? new FairSync() : new NonfairSync();
}

java
1
2
3
4

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 26/36

https://javaguide.cn/java/concurrent/aqs.html
https://javaguide.cn/java/concurrent/aqs.html

JDK Lock synchronized

method1() method2() synchronized
method1() method2()

 synchronized method1()
 method2()

synchronized
 method2()

synchronized JVM JDK1.6
synchronized

ReentrantLock JDK API lock() unlock()
try/finally

synchronized ReentrantLock

 : ReentrantLock
lock.lockInterruptibly()

synchronized JVM ReentrantLock API

ReentrantLock synchronized

public class SynchronizedDemo {
 public synchronized void method1() {
 System.out.println(" 1");
 method2();
 }

 public synchronized void method2() {
 System.out.println(" 2");
 }
}

java
1
2
3
4
5
6
7
8
9
10

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 27/36

 interrupt()
InterruptedException

 : ReentrantLock synchronized
ReentrantLock

 ReentrantLock ReentrantLock(boolean fair)

: synchronized wait()
notify() / notifyAll() / ReentrantLock

Condition newCondition()
 ReentrantLock tryLock(timeout)

 ReentrantLock

 Condition

Condition JDK1.5
Lock Condition

Condition
 notify()/notifyAll() JVM
ReentrantLock Condition “ ”

 Condition synchronized
 Lock Condition
notifyAll()

Condition signalAll() Condition

lockInterruptibly()

 interrupt()
InterruptedException

 Stack Overflow
lockInterruptibly()

public class MyRentrantlock {
 Thread t = new Thread() {
 @Override
 public void run() {
 ReentrantLock r = new ReentrantLock();
 // 1.1

java
1
2
3
4
5

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 28/36

 r.lock();

 // 1.2 1
 System.out.println("lock() : lock count :" +
r.getHoldCount());

 // 2
Thread.currentThread().isInterrupted()
true
 interrupt();
 System.out.println("Current thread is intrupted");

 // 3.1
 r.tryLock();
 // 3.2 2
 System.out.println("tryLock() on intrupted thread
lock count :" + r.getHoldCount());
 try {
 // 4 true
lockInterruptibly() InterruptedException
 System.out.println("Current Thread
isInterrupted:" + Thread.currentThread().isInterrupted());
 r.lockInterruptibly();
 System.out.println("lockInterruptibly() --NOt
executable statement" + r.getHoldCount());
 } catch (InterruptedException e) {
 r.lock();
 System.out.println("Error");
 } finally {
 r.unlock();
 }

 // 5 lockInterruptibly()

 System.out.println("lockInterruptibly() not able to
Acqurie lock: lock count :" + r.getHoldCount());

 r.unlock();
 System.out.println("lock count :" +
r.getHoldCount());
 r.unlock();
 System.out.println("lock count :" +
r.getHoldCount());

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 29/36

 tryLock(timeout)
tryLock(timeout)
true false

 tryLock(timeout)

 tryLock(timeout)

ReentrantLock

synchronized

 }
 };
 public static void main(String str[]) {
 MyRentrantlock m = new MyRentrantlock();
 m.t.start();
 }
}

lock() : lock count :1
Current thread is intrupted
tryLock() on intrupted thread lock count :2
Current Thread isInterrupted:true
Error
lockInterruptibly() not able to Acqurie lock: lock count :2
lock count :1
lock count :0

bash
1
2
3
4
5
6
7
8

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 30/36

ReentrantReadWriteLock
JDK 1.8 StampedLock

ReentrantReadWriteLock ReadWriteLock

ReentrantReadWriteLock WriteLock ()
ReadLock

 ReentrantLock ReentrantReadWriteLock AQS

ReentrantReadWriteLock

ReentrantReadWriteLock

public class ReentrantReadWriteLock
 implements ReadWriteLock, java.io.Serializable{
}
public interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
}

java
1
2
3
4
5
6
7

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 31/36

ReentrantReadWriteLock

 ReentrantReadWriteLock
 ReentrantReadWriteLock

(
)

 Java JVM -

ReentrantReadWriteLock

// boolean true false
public ReentrantReadWriteLock(boolean fair) {
 sync = fair ? new FairSync() : new NonfairSync();
 readerLock = new ReadLock(this);
 writerLock = new WriteLock(this);
}

java
1
2
3
4
5
6

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 32/36

https://mp.weixin.qq.com/s/h3VIUyH9L0v14MrQJiiDbw
https://mp.weixin.qq.com/s/h3VIUyH9L0v14MrQJiiDbw

StampedLock

StampedLock JDK 1.8
Condition

 Lock StampedLock Lock ReadWriteLock
 CLH AQS

StampedLock

 ReentrantReadWriteLock

ReentrantReadWriteLock

StampedLock

StampedLock long
 0
StampedLock

StampedLock

StampedLock

public class StampedLock implements java.io.Serializable {
}

long tryConvertToWriteLock(long stamp){}
long tryConvertToReadLock(long stamp){}
long tryConvertToOptimisticRead(long stamp){}

java
1
2

java
1
2
3

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 33/36

StampedLock ReadWriteLock
StampedLock

 ReentrantReadWriteLock StampedLock
 ReentrantReadWriteLock

StampedLock Condition
 CPU ReentrantLock

 StampedLock

StampedLock

StampedLock

//
public long writeLock() {
 long s, next; // bypass acquireWrite in fully unlocked case
only
 return ((((s = state) & ABITS) == 0L &&
 U.compareAndSwapLong(this, STATE, s, next = s + WBIT))
?
 next : acquireWrite(false, 0L));
}
//
public long readLock() {
 long s = state, next; // bypass acquireRead on common
uncontended case
 return ((whead == wtail && (s & ABITS) < RFULL &&
 U.compareAndSwapLong(this, STATE, s, next = s +
RUNIT)) ?
 next : acquireRead(false, 0L));
}
//
public long tryOptimisticRead() {
 long s;
 return (((s = state) & WBIT) == 0L) ? (s & SBITS) : 0L;
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 34/36

StampedLock
StampedLock StampedLock

StampedLock Lock ReadWriteLock CLH
AQS CLH

StampedLock CLH state

StampedLock AQS

AQS
StampedLock

 AQS StampedLock

Atomic Atomic

 Java
 Java

Guide to the Volatile Keyword in Java - Baeldung https://www.baeldung.com/java-
volatile

 Java“ ” - https://tech.meituan.com/2018/11/15/java-
lock.html

 ReadWriteLock
https://cloud.tencent.com/developer/article/1176230

 StampedLock
https://mp.weixin.qq.com/s/2Acujjr4BHIhlFsCLGwYSg

 Java ThreadLocal -
https://droidyue.com/blog/2016/03/13/learning-threadlocal-in-java/

StampedLock

Atomic

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 35/36

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html
https://javaguide.cn/java/concurrent/aqs.html
https://javaguide.cn/java/concurrent/aqs.html
https://segmentfault.com/a/1190000015808032
https://segmentfault.com/a/1190000015808032
https://javaguide.cn/java/concurrent/atomic-classes.html
https://www.baeldung.com/java-volatile
https://www.baeldung.com/java-volatile
https://www.baeldung.com/java-volatile
https://tech.meituan.com/2018/11/15/java-lock.html
https://tech.meituan.com/2018/11/15/java-lock.html
https://tech.meituan.com/2018/11/15/java-lock.html
https://cloud.tencent.com/developer/article/1176230
https://cloud.tencent.com/developer/article/1176230
https://mp.weixin.qq.com/s/2Acujjr4BHIhlFsCLGwYSg
https://mp.weixin.qq.com/s/2Acujjr4BHIhlFsCLGwYSg
https://droidyue.com/blog/2016/03/13/learning-threadlocal-in-java/
https://droidyue.com/blog/2016/03/13/learning-threadlocal-in-java/

ThreadLocal (Java Platform SE 8) - Oracle Help Center
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html

2025/8/7 15:13
Contributors: SnailClimb , Farahani , halle , yellowgg , Ryze-Zhao , Snailclimb , shuang.kou , guide ,

Lshare , qiuyukang , pengchen211 , drlifeL , Tan Jiuding , 2293736867 , kaka2634 , chengcjk ,
HangdianGhostMr. , cxhello , WangjiaW , Curvature , Itswag , Evan He , JuiceApp1e , Verne.Chung ,

Carbda , Guide , ale , Nicolas , Mr.Hope , paigeman , liuxiaocs7 , aucub , liangyi , smy1999 , suppered ,
11 , Kisa-Dong , Slade , Wenweigood , uncle-lv

Copyright © 2025 Guide

9/22/25, 4:10 PM Summary of Common Java Concurrency Interview Questions (Part 2) | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-questions-02.html 36/36

https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html

