
Most of these containers provided by JDK are in java.util.concurrent the package.

ConcurrentHashMap : Thread-safe HashMap
CopyOnWriteArrayList : Thread-safe List , performance is very good in situations

where there are more reads than writes, far better than Vector .
ConcurrentLinkedQueue : An efficient concurrent queue implemented using a linked

list. LinkedList It can be considered a thread-safe, non-blocking queue.
BlockingQueue : This is an interface that is implemented internally in the JDK through

linked lists, arrays, and other methods. It represents a blocking queue and is very
suitable for use as a channel for data sharing.
ConcurrentSkipListMap : Implementation of skip list. This is a Map that uses the skip

list data structure for fast search.

As we know, HashMap is thread-unsafe. If used in concurrent scenarios, a common
solution is to wrap with Collections.synchronizedMap() the method HashMap to make
it thread-safe. However, this approach uses a global lock to synchronize concurrent access
between different threads, which can lead to severe performance bottlenecks, especially in
highly concurrent scenarios.

In order to solve this problem, ConcurrentHashMap came into being. As HashMap a
thread-safe version of , it provides more efficient concurrent processing capabilities.

In JDK 1.7, ConcurrentHashMap the entire bucket array was segmented (
Segment segmented locks). Each lock only locked a portion of the container data (see the

diagram below). When multiple threads accessed data in different data segments in the
container, there would be no lock contention, thereby improving the concurrent access
rate.

ConcurrentHashMap

Summary of Common Java
Concurrency Containers

Guide Java About 3019 words About 10 minutesJava Concurrency

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 1/10

https://javaguide.cn/article/

In JDK 1.8, segmented locking ConcurrentHashMap was removed and concurrency safety
was ensured. The data structure is similar to that of 1.8: array + linked list/red-black
binary tree. Java 8 converts the linked list (with an addressing time complexity of O(N)) to
a red-black tree (with an addressing time complexity of O(log(N)))) when the linked list
length exceeds a certain threshold (8). Segment Node + CAS + synchronized HashMap

In Java 8, the lock granularity is finer, synchronized only locking the first node of the
current linked list or red-black binary tree. In this way, as long as the hash does not
conflict, no concurrency will occur, and the reading and writing of other nodes will not be
affected, which greatly improves efficiency.

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 2/10

For ConcurrentHashMap a detailed introduction to , please see this article I wrote:
ConcurrentHashMap Source Code Analysis .

Prior to JDK 1.5, concurrency-safe List was the only choice Vector . However Vector ,
is an older, deprecated collection. Vector Implementations of add, delete, modify, and
query methods were added synchronized . While this approach ensured synchronization,
it effectively Vector locked the entire , forcing each method to acquire the lock before
executing, resulting in very poor performance.

JDK1.5 introduced Java.util.concurrent the (JUC) package, which provides many
thread-safe and concurrent performance containers, among which the only thread-safe
List implementation is CopyOnWriteArrayList .

In most business scenarios, read operations often far outnumber write operations. Since
read operations don't modify existing data, locking every read operation is a waste of
resources. In contrast, we should allow multiple threads to access List internal data
simultaneously; this is safe for read operations.

This approach ReentrantReadWriteLock is very similar to the design philosophy of read-
write locks: reads and reads are mutually exclusive, reads and writes are mutually
exclusive, and writes and writes are mutually exclusive (only reads and reads are mutually
exclusive). CopyOnWriteArrayList This concept is further implemented. To maximize
read performance, CopyOnWriteArrayList read operations in the lock are completely
lock-free. Even more impressively, writes do not block reads; only writes and writes are
mutually exclusive. This significantly improves read performance.

CopyOnWriteArrayList The core of thread safety lies in its use of the Copy-On-Write
strategy, which CopyOnWriteArrayList can be seen from the name.

When the content needs to be modified (add , set , remove etc.)
CopyOnWriteArrayList , the original array will not be modified directly. Instead, a copy

of the underlying array will be created first, the copy array will be modified, and then the
modified array will be assigned back after the modification. This ensures that the write
operation will not affect the read operation.

For CopyOnWriteArrayList a detailed introduction to , please see this article I wrote:
CopyOnWriteArrayList Source Code Analysis .

CopyOnWriteArrayList

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 3/10

https://javaguide.cn/java/collection/concurrent-hash-map-source-code.html
https://javaguide.cn/java/collection/copyonwritearraylist-source-code.html

The thread-safe queues provided by Java Queue can be divided into blocking queues
and non-blocking queues . A typical example of a blocking queue is BlockingQueue ,
and a typical example of a non-blocking queue is ConcurrentLinkedQueue . In practical
applications, the choice of blocking queue or non-blocking queue should be based on actual
needs. Blocking queues can be implemented through locking, while non-
blocking queues can be implemented through CAS operations.

As the name suggests, ConcurrentLinkedQueue this queue uses a linked list as its data
structure. ConcurrentLinkedQueue It's considered one of the best performing queues in
highly concurrent environments. Its high performance is due to its complex internal
implementation.

ConcurrentLinkedQueue We will not analyze the internal code. As long as we know that
ConcurrentLinkedQueue the CAS non-blocking algorithm is mainly used to achieve

thread safety.

ConcurrentLinkedQueue It is suitable for scenarios with relatively high performance
requirements and where multiple threads are reading and writing queues simultaneously.
That is, if the cost of locking the queue is high, it is suitable to use lock-free
ConcurrentLinkedQueue instead.

We've already mentioned ConcurrentLinkedQueue as a high-performance non-blocking
queue. Next, we'll discuss blocking queues BlockingQueue . Blocking queues (
BlockingQueue) are widely used in producer-consumer problems because they
BlockingQueue provide blocking insertion and removal methods. When the queue

container is full, the producer thread is blocked until the queue is full; when the queue
container is empty, the consumer thread is blocked until the queue is not empty.

BlockingQueue is an interface that inherits from Queue , so its implementation class can
also Queue be used as an implementation of , which in Queue turn inherits from
Collection the interface. The following are BlockingQueue the relevant implementation

ConcurrentLinkedQueue

BlockingQueue

Introduction to BlockingQueue

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 4/10

classes of :

The following mainly introduces three common BlockingQueue implementation classes:
ArrayBlockingQueue , LinkedBlockingQueue , and PriorityBlockingQueue .

ArrayBlockingQueue It is BlockingQueue a bounded queue implementation class of the
interface, and is implemented using an array at the bottom layer.

ArrayBlockingQueue Once created, the capacity cannot be changed. Its concurrency
control uses reentrant locks ReentrantLock , requiring both insert and read operations to
acquire the lock. When the queue is full, attempting to put an element into the queue will
cause the operation to block; attempting to retrieve an element from an empty queue will
also block.

ArrayBlockingQueue By default, fairness in thread access to the queue is not guaranteed.
Fairness means strict adherence to the absolute order in which threads wait, meaning that
the thread waiting first receives access first ArrayBlockingQueue . Inequity, however,
means that access ArrayBlockingQueue to queues does not strictly follow this order. It's
possible that ArrayBlockingQueue a thread blocked for a long time may still be unable to
access a queue when it becomes available ArrayBlockingQueue . Ensuring fairness
typically reduces throughput. To achieve fairness ArrayBlockingQueue , use the following
code:

ArrayBlockingQueue

public class ArrayBlockingQueue<E>
extends AbstractQueue<E>
implements BlockingQueue<E>, Serializable{}

java
1
2
3

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 5/10

LinkedBlockingQueue The underlying blocking queue is implemented as a singly
linked list . It can be used as either an unbounded or bounded queue, and it also meets
the FIFO characteristics. ArrayBlockingQueue Compared with , it has higher throughput.
To prevent LinkedBlockingQueue the capacity of from increasing rapidly and consuming
a large amount of memory, LinkedBlockingQueue a size is usually specified when
creating a . If not specified, the capacity is equal to Integer.MAX_VALUE .

Related construction methods:

LinkedBlockingQueue

private static ArrayBlockingQueue<Integer> blockingQueue = new
ArrayBlockingQueue<Integer>(10,true);

 /**
 *某种意义上的无界队列
 * Creates a {@code LinkedBlockingQueue} with a capacity of
 * {@link Integer#MAX_VALUE}.
 */
 public LinkedBlockingQueue() {
 this(Integer.MAX_VALUE);
 }

 /**
 *有界队列
 * Creates a {@code LinkedBlockingQueue} with the given (fixed)
capacity.
 *
 * @param capacity the capacity of this queue
 * @throws IllegalArgumentException if {@code capacity} is not
greater
 * than zero
 */
 public LinkedBlockingQueue(int capacity) {
 if (capacity <= 0) throw new IllegalArgumentException();
 this.capacity = capacity;
 last = head = new Node<E>(null);
 }

java
1

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 6/10

PriorityBlockingQueue It is an unbounded blocking queue that supports priorities. By
default, elements are sorted in natural order. You can also compareTo() specify the
ordering rules by implementing methods in a custom class or by specifying the ordering
rules via constructor parameters during initialization Comparator .

PriorityBlockingQueue Concurrency control uses reentrant locks ReentrantLock , and
the queue is an unbounded queue (ArrayBlockingQueue it is a bounded queue, and you
can also specify the maximum capacity of the queue LinkedBlockingQueue by passing it
in the constructor , but you can only specify the initial queue size. When you insert
elements later, it will automatically expand if there is not enough space
). capacity PriorityBlockingQueue

Simply put, it's PriorityQueue a thread-safe version of . Null values ​​cannot be inserted,
and objects inserted into the queue must be of comparable size, otherwise
ClassCastException an exception will be thrown. Its put method does not block

insertions because it's an unbounded queue (the take method will block if the queue is
empty).

Recommended article: "Interpreting Java Concurrent Queue BlockingQueue"

The following content refers to the Geek Time column "The Beauty of Data Structures
and Algorithms" and "Practical Java High Concurrency Programming".

To introduce it ConcurrentSkipListMap , let's first take a brief look at the jump table.

Even if a singly linked list is ordered, searching for data in it requires traversing the list
from beginning to end, which is inherently inefficient. However, a skip list is a different
approach. A skip list is a data structure that allows for fast searches, somewhat similar to a
balanced tree. Both allow for fast element lookups. However, a key difference is that
insertions and deletions in a balanced tree often require a global adjustment. Insertions
and deletions in a skip list, on the other hand, require only local operations on the entire
data structure. This offers the advantage that, in highly concurrent environments, a global
lock is required to ensure thread safety for the entire balanced tree. With a skip list, only

PriorityBlockingQueue

ConcurrentSkipListMap

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 7/10

https://javadoop.com/post/java-concurrent-queue
https://javadoop.com/post/java-concurrent-queue
https://time.geekbang.org/column/intro/126?code=zl3GYeAsRI4rEJIBNu5B/km7LSZsPDlGWQEpAYw5Vu0=&utm_term=SPoster
https://time.geekbang.org/column/intro/126?code=zl3GYeAsRI4rEJIBNu5B/km7LSZsPDlGWQEpAYw5Vu0=&utm_term=SPoster
https://time.geekbang.org/column/intro/126?code=zl3GYeAsRI4rEJIBNu5B/km7LSZsPDlGWQEpAYw5Vu0=&utm_term=SPoster

partial locks are required. This results in better performance in highly concurrent
environments. Furthermore, the time complexity of a skip list is also O(log n). Therefore,
among concurrent data structures, the JDK uses a skip list to implement a Map.

The essence of the jump list is to maintain multiple linked lists at the same time, and the
linked lists are hierarchical.

The lowest level linked list maintains all the elements in the skip list, and each upper level
linked list is a subset of the lower level.

All linked lists within a skip list are sorted. When searching, you start at the top-level
linked list. If the element being searched is greater than the value in the current linked list,
the search continues in the next linked list. This means that the search is performed in a
jumpy manner. For example, in the figure above, we are searching for element 18 in the
skip list.

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 8/10

When searching for 18, it used to require 18 traversals, but now it only requires 7. When
the length of the linked list is relatively long, the improvement in search efficiency by
building an index will be very obvious.

It is easy to see from the above that the jump table is an algorithm that uses space
to exchange time.

Another difference between implementing a skip list Map and a hash algorithm Map is
that a hash doesn't preserve the order of elements, while all elements in a skip list are
sorted. Therefore, when traversing a skip list, you obtain an ordered result. Therefore, if
your application requires order, a skip list is the best choice. The class that implements this
data structure in the JDK is [ConcurrentSkipListMap].

Practical Java High Concurrency Programming
https://javadoop.com/post/java-concurrent-queue
https://juejin.im/post/5aeebd02518825672f19c546

refer to

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 9/10

https://javadoop.com/post/java-concurrent-queue
https://javadoop.com/post/java-concurrent-queue
https://juejin.im/post/5aeebd02518825672f19c546
https://juejin.im/post/5aeebd02518825672f19c546

Recently Updated2024/12/29 12:24
Contributors: Snailclimb , Gene , IceDarron , SnailClimb , guide , Tan Jiuding , Guide , Mr.Hope

Copyright © 2025 Guide

9/21/25, 2:22 PM Summary of Common Java Concurrency Containers | JavaGuide

https://javaguide.cn/java/concurrent/java-concurrent-collections.html 10/10

