
IO stands for Input/Output input and output. Input is the process of inputting data into
computer memory, while output is the process of outputting data to external storage (such
as a database, file, or remote host). The data transfer process is similar to the flow of water,
hence the name IO stream. In Java, IO streams are categorized as input streams and
output streams, which are further categorized as byte streams and character streams
depending on how the data is processed.

More than 40 Java IO stream classes are derived from the following four abstract base
classes.

InputStream / Reader : The base class of all input streams, the former is a byte input
stream, and the latter is a character input stream.
OutputStream / Writer : The base class of all output streams, the former is a byte

output stream, and the latter is a character output stream.

InputStream Used to read data (byte information) from the source (usually a file) into
memory. java.io.InputStream The abstract class is the parent class of all byte input
streams.

Interview special edition : Friends who are preparing for Java interviews can consider
the interview special edition: "Java Interview Guide" (very high quality, specially
designed for interviews, best used with JavaGuide).
Knowledge Planet : Technical Column/One-on-one Questions/Resume
Modification/Job Hunting Guide/Interview Check-in/Irregular Benefits, welcome to join
the JavaGuide official Knowledge Planet .

This is a small advertisement that may be useful to you

Introduction to IO Streams

Byte Stream

InputStream (byte input stream)

Java IO basics summary
Guide Java About 4720 words About 16 minutesJava IO, Java Basics

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 1/20

https://javaguide.cn/zhuanlan/java-mian-shi-zhi-bei.html
https://javaguide.cn/about-the-author/zhishixingqiu-two-years.html
https://javaguide.cn/article/

InputStream Common methods:

read() : Returns the next byte of data in the input stream. The returned value is
between 0 and 255. If no bytes are read, the code returns -1 , indicating end of file.
read(byte b[]) : Reads some bytes from the input stream and stores them b in

array . If array b is of length zero, no bytes are read. If no bytes are available to read,
return -1 . If bytes are available to read, the number of bytes read is at most equal to
b.length the number of bytes read, and return . This method is equivalent to read(b,
0, b.length) .
read(byte b[], int off, int len) : read(byte b[]) Added off the parameter

(offset) and len parameter (maximum number of bytes to read) based on the method.
skip(long n) : Ignore n bytes in the input stream and return the number of bytes

actually ignored.
available() : Returns the number of bytes that can be read from the input stream.
close() : Close the input stream to release related system resources.

Starting from Java 9, InputStream several new useful methods have been added:

readAllBytes() : Read all bytes from the input stream and return a byte array.
readNBytes(byte[] b, int off, int len) : Block until len bytes are read.
transferTo(OutputStream out) : Passes all bytes from one input stream to an output

stream.

FileInputStream It is a commonly used byte input stream object that can directly specify
the file path, read single-byte data directly, or read it into a byte array.

FileInputStream Code example:

try (InputStream fis = new FileInputStream("input.txt")) {
 System.out.println("Number of remaining bytes:"
 + fis.available());
 int content;
 long skip = fis.skip(2);
 System.out.println("The actual number of bytes skipped:" +
skip);
 System.out.print("The content read from file:");
 while ((content = fis.read()) != -1) {
 System.out.print((char) content);
 }
} catch (IOException e) {
 e.printStackTrace();
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 2/20

input.txt File contents:

Output:

However, we generally do not use it alone FileInputStream , but usually
BufferedInputStream use it in conjunction with (byte buffer input stream, which will be

discussed later).

The following code is quite common in our projects. We readAllBytes() read all bytes of
the input stream and assign them directly to an String object.

DataInputStream Used to read data of a specified type. It cannot be used alone and must
be combined with other streams, such FileInputStream as

Number of remaining bytes:11
The actual number of bytes skipped:2
The content read from file:JavaGuide

// BufferedInputStream
BufferedInputStream bufferedInputStream = new
BufferedInputStream(new FileInputStream("input.txt"));
// String
String result = new String(bufferedInputStream.readAllBytes());
System.out.println(result);

plain
1
2
3

java
1
2
3
4
5

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 3/20

ObjectInputStream Used to read Java objects from an input stream (deserialization) and
ObjectOutputStream to write objects to an output stream (serialization).

In addition, the class used for serialization and deserialization must implement
Serializable the interface. If there are attributes in the object that you do not want to be

serialized, use transient the modifier.

OutputStream Used to write data (byte information) to a destination (usually a file).
java.io.OutputStream The abstract class is the parent class of all byte output streams.

OutputStream Common methods:

write(int b) : Writes specific bytes to the output stream.
write(byte b[]) : b Writes the array to the output stream, equivalent to write(b,
0, b.length) .
write(byte[] b, int off, int len) : Based on the method , the parameter (offset)

and parameter (maximum number of bytes to read) write(byte b[]) are added
. off len
flush() : Flushes this output stream and forces any buffered output bytes to be written

out.
close() : Close the output stream to release related system resources.

FileOutputStream It is the most commonly used byte output stream object. It can
directly specify the file path, directly output single-byte data, or output a specified byte
array.

OutputStream (byte output stream)

FileInputStream fileInputStream = new FileInputStream("input.txt");
// fileInputStream
DataInputStream dataInputStream = new
DataInputStream(fileInputStream);
//
dataInputStream.readBoolean();
dataInputStream.readInt();
dataInputStream.readUTF();

ObjectInputStream input = new ObjectInputStream(new
FileInputStream("object.data"));
MyClass object = (MyClass) input.readObject();
input.close();

java
1
2
3
4
5
6
7

java
1
2
3

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 4/20

FileOutputStream Code example:

Run results:

Similarly FileInputStream , FileOutputStream it is usually
BufferedOutputStream used in conjunction with (byte buffer output stream, which will

be discussed later).

DataOutputStream Used to write data of a specified type. It cannot be used alone and
must be combined with other streams, such FileOutputStream as

try (FileOutputStream output = new FileOutputStream("output.txt"))
{
 byte[] array = "JavaGuide".getBytes();
 output.write(array);
} catch (IOException e) {
 e.printStackTrace();
}

FileOutputStream fileOutputStream = new
FileOutputStream("output.txt");
BufferedOutputStream bos = new
BufferedOutputStream(fileOutputStream)

java
1
2
3
4
5
6

java
1
2

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 5/20

ObjectInputStream Used to read Java objects from the input stream (
ObjectInputStream , deserialization) and ObjectOutputStream write objects to the

output stream (ObjectOutputStream , serialization).

Whether reading or writing files or sending or receiving over the network, the smallest
storage unit of information is a byte. So why are I/O stream operations divided into
byte stream operations and character stream operations?

I think there are two main reasons:

The character stream is obtained by converting bytes by the Java virtual machine, which
is a relatively time-consuming process.
If we don't know the encoding type, it is easy to have garbled characters.

The garbled code problem can be easily reproduced. We only need to change the file
content FileInputStream in the code example mentioned above input.txt to Chinese.
The original code does not need to be changed.

Character Stream

//
FileOutputStream fileOutputStream = new
FileOutputStream("out.txt");
DataOutputStream dataOutputStream = new
DataOutputStream(fileOutputStream);
//
dataOutputStream.writeBoolean(true);
dataOutputStream.writeByte(1);

ObjectOutputStream output = new ObjectOutputStream(new
FileOutputStream("file.txt")
Person person = new Person("Guide ", "JavaGuide ");
output.writeObject(person);

java
1
2
3
4
5
6

java
1
2
3

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 6/20

Output:

It can be clearly seen that the read content has become garbled.

Therefore, I/O streams simply provide an interface for directly manipulating characters,
making it convenient for us to perform stream operations on characters. If you are working
with media files such as audio files and pictures, it is better to use byte streams, and if you
are working with characters, it is better to use character streams.

The character stream uses Unicode encoding by default, and we can customize the
encoding through the construction method.

Unicode itself is just a character set. It assigns each character a unique numeric number
and doesn't specify a specific storage method. UTF-8, UTF-16, and UTF-32 are all Unicode
encodings, each using different numbers of bytes to represent a Unicode character. For
example, in UTF-8, English takes up 1 byte, while Chinese takes up 3 bytes.

Reader Used to read data (character information) from the source (usually a file) into
memory. java.io.Reader The abstract class is the parent class of all character input
streams.

Reader (character input stream)

Number of remaining bytes:9
The actual number of bytes skipped:2
The content read from file:§å®¶å¥½

java
1
2
3

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 7/20

Reader for reading text, InputStream and for reading raw bytes.

Reader Common methods:

read() : Read a character from the input stream.
read(char[] cbuf) : Reads some characters from the input stream and stores them

into a character array cbuf , equivalent to read(cbuf, 0, cbuf.length) .
read(char[] cbuf, int off, int len) : read(char[] cbuf) Added off the

parameter (offset) and len parameter (maximum number of characters to read) based
on the method.
skip(long n) : Ignore n characters in the input stream and return the number of

characters actually ignored.
close() : Close the input stream and release related system resources.

InputStreamReader It is a bridge for converting byte stream into character stream. Its
subclass FileReader is an encapsulation based on this basis and can directly operate
character files.

FileReader Code example:

input.txt File contents:

//
public class InputStreamReader extends Reader {
}
//
public class FileReader extends InputStreamReader {
}

try (FileReader fileReader = new FileReader("input.txt");) {
 int content;
 long skip = fileReader.skip(3);
 System.out.println("The actual number of bytes skipped:" +
skip);
 System.out.print("The content read from file:");
 while ((content = fileReader.read()) != -1) {
 System.out.print((char) content);
 }
} catch (IOException e) {
 e.printStackTrace();
}

java
1
2
3
4
5
6

java
1
2
3
4
5
6
7
8
9
10
11

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 8/20

Output:

Writer Used to write data (character information) to a destination (usually a file).
java.io.Writer The abstract class is the parent class of all character output streams.

Writer Common methods:

write(int c) : Write a single character.
write(char[] cbuf) : Writes a character array cbuf , equivalent to write(cbuf, 0,
cbuf.length) .
write(char[] cbuf, int off, int len) : write(char[] cbuf) Added off the

parameter (offset) and len parameter (maximum number of characters to read) based
on the method.
write(String str) : Write a string, equivalent to write(str, 0, str.length()) .
write(String str, int off, int len) : write(String str) Added off the

parameter (offset) and len parameter (maximum number of characters to read) based
on the method.
append(CharSequence csq) : Appends the specified character sequence to the

specified Writer object and returns the Writer object.
append(char c) : Appends the specified characters to the specified Writer object and

returns the Writer object.

Writer (character output stream)

The actual number of bytes skipped:3
The content read from file: Guide

plain
1
2

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 9/20

flush() : Flushes this output stream and forces any buffered output characters to be
written.
close() : Close the output stream to release related system resources.

OutputStreamWriter It is a bridge for converting character stream into byte stream. Its
subclass FileWriter is an encapsulation based on this basis, which can write characters
directly to files.

FileWriter Code example:

Output:

//
public class OutputStreamWriter extends Writer {
}
//
public class FileWriter extends OutputStreamWriter {
}

try (Writer output = new FileWriter("output.txt")) {
 output.write(" Guide ");
} catch (IOException e) {
 e.printStackTrace();
}

java
1
2
3
4
5
6

java
1
2
3
4
5

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 10/20

IO operations are very performance-intensive. Buffered streams load data into a buffer and
read/write multiple bytes at a time, thereby avoiding frequent IO operations and
improving stream transmission efficiency.

The byte buffer stream uses the decorator pattern here to enhance the functionality of
InputStream and OutputStream subclass objects.

For example, we can BufferedInputStream enhance the functionality of by (byte buffer
input stream) FileInputStream .

The performance difference between byte streams and byte buffer streams primarily occurs
when calling the write(int b) and read() methods, which read only one byte at a time.
Because byte buffer streams have an internal buffer (byte array), they first store the read
bytes in the cache, significantly reducing I/O times and improving reading efficiency.

I used the write(int b) and read() methods to copy a PDF file using byte stream and
byte buffer stream respectively. 524.9 mb The time taken is as follows:

The time difference between the two is very large, and the time consumed by the buffered
stream is 1/165 of that of the byte stream.

The test code is as follows:

Byte buffer stream

// BufferedInputStream
BufferedInputStream bufferedInputStream = new
BufferedInputStream(new FileInputStream("input.txt"));

PDF :15428
PDF :2555062

@Test
void copy_pdf_to_another_pdf_buffer_stream() {
 //
 long start = System.currentTimeMillis();
 try (BufferedInputStream bis = new BufferedInputStream(new
FileInputStream(" .pdf"));
 BufferedOutputStream bos = new BufferedOutputStream(new

java
1
2

plain
1
2

java
1
2
3
4
5
6
7

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 11/20

If you call the read(byte b[]) and write(byte b[], int off, int len) methods
that write a byte array, as long as the byte array is of the right size, the performance
difference between the two is actually small and can be basically ignored.

This time we use read(byte b[]) the and write(byte b[], int off, int
len) methods to copy a 524.9 MB PDF file using byte stream and byte buffer stream
respectively. The time taken is as follows:

FileOutputStream(" - .pdf"))) {
 int content;
 while ((content = bis.read()) != -1) {
 bos.write(content);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 //
 long end = System.currentTimeMillis();
 System.out.println(" PDF :" + (end - start) +
" ");
}

@Test
void copy_pdf_to_another_pdf_stream() {
 //
 long start = System.currentTimeMillis();
 try (FileInputStream fis = new FileInputStream("

.pdf");
 FileOutputStream fos = new FileOutputStream("

- .pdf")) {
 int content;
 while ((content = fis.read()) != -1) {
 fos.write(content);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 //
 long end = System.currentTimeMillis();
 System.out.println(" PDF :" + (end - start) +
" ");
}

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 12/20

The time difference between the two is not very large, and the performance of the buffered
stream is slightly better.

The test code is as follows:

PDF :695
PDF :989

@Test
void copy_pdf_to_another_pdf_with_byte_array_buffer_stream() {
 //
 long start = System.currentTimeMillis();
 try (BufferedInputStream bis = new BufferedInputStream(new
FileInputStream(" .pdf"));
 BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(" - .pdf"))) {
 int len;
 byte[] bytes = new byte[4 * 1024];
 while ((len = bis.read(bytes)) != -1) {
 bos.write(bytes, 0, len);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 //
 long end = System.currentTimeMillis();
 System.out.println(" PDF :" + (end - start) +
" ");
}

@Test
void copy_pdf_to_another_pdf_with_byte_array_stream() {
 //
 long start = System.currentTimeMillis();
 try (FileInputStream fis = new FileInputStream("

.pdf");
 FileOutputStream fos = new FileOutputStream("

- .pdf")) {
 int len;
 byte[] bytes = new byte[4 * 1024];
 while ((len = fis.read(bytes)) != -1) {
 fos.write(bytes, 0, len);

plain
1
2

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 13/20

BufferedInputStream When reading data (byte information) from a source (usually a
file) into memory, the system does not read the data byte by byte. Instead, the read bytes
are first stored in a buffer and then read individually from the internal buffer. This
significantly reduces the number of IO operations and improves reading efficiency.

BufferedInputStream A buffer is maintained internally, which is actually a byte array.
BufferedInputStream This conclusion can be drawn by reading the source code.

BufferedInputStream (byte buffered input stream)

 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 //
 long end = System.currentTimeMillis();
 System.out.println(" PDF :" + (end - start) +
" ");
}

public
class BufferedInputStream extends FilterInputStream {
 //
 protected volatile byte buf[];
 //
 private static int DEFAULT_BUFFER_SIZE = 8192;
 //
 public BufferedInputStream(InputStream in) {
 this(in, DEFAULT_BUFFER_SIZE);
 }
 //
 public BufferedInputStream(InputStream in, int size) {
 super(in);
 if (size <= 0) {
 throw new IllegalArgumentException("Buffer size <= 0");
 }
 buf = new byte[size];
 }
}

35
36
37

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 14/20

The default buffer size is 8192 bytes. Of course, you can also
BufferedInputStream(InputStream in, int size) specify the buffer size through this

construction method.

BufferedOutputStream When writing data (byte information) to the destination (usually
a file), it will not write byte by byte, but will first store the bytes to be written in the buffer
area, and then write the bytes separately from the internal buffer. This greatly reduces the
number of IO times and improves efficiency.

Similarly BufferedInputStream , BufferedOutputStream a buffer is maintained
internally, and the size of this buffer is also 8192 bytes.

BufferedReader (Character-buffered input stream) and BufferedWriter (Character-
buffered output stream) are similar to BufferedInputStream (Byte-buffered input
stream) and BufferedOutputStream (Byte-buffered input stream), both of which
maintain a byte array as a buffer. However, the former is mainly used to operate on
character information.

Do you often use the following code?

BufferedOutputStream (byte buffered output stream)

Character buffer stream

Print Stream

try (BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream("output.txt"))) {
 byte[] array = "JavaGuide".getBytes();
 bos.write(array);
} catch (IOException e) {
 e.printStackTrace();
}

System.out.print("Hello ");
System.out.println("Hello ");

java
1
2
3
4
5
6

java
1
2

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 15/20

System.out It is actually used to obtain an PrintStream object, print and the method
actually calls the method PrintStream of the object write .

PrintStream Belongs to byte print stream, corresponding to PrintWriter (character
print stream). PrintStream It is OutputStream a subclass of , which PrintWriter is
Writer a subclass of .

The random access stream introduced here refers to the support for jumping to any
position in the file for reading and writing RandomAccessFile .

RandomAccessFile The construction method is as follows, we can specify mode (read and
write mode).

There are four main read and write modes:

r : Read-only mode.
rw : Read-write mode
rws : Synchronously rw updates rws changes to the "file contents" or "metadata" to

the external storage device.
rwd : Synchronously rw updates rwd changes to the "file contents" to the external

storage device.

Random Access Streams

public class PrintStream extends FilterOutputStream
 implements Appendable, Closeable {
}
public class PrintWriter extends Writer {
}

// openAndDelete false
public RandomAccessFile(File file, String mode)
 throws FileNotFoundException {
 this(file, mode, false);
}
//
private RandomAccessFile(File file, String mode, boolean
openAndDelete) throws FileNotFoundException{
 //
}

java
1
2
3
4
5

java
1
2
3
4
5
6
7
8
9

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 16/20

File content refers to the data actually stored in the file, while metadata is used to describe
file attributes such as file size, creation and modification time.

RandomAccessFile There is a file pointer in that indicates the location of the next byte to
be written or read. We can set the offset of the file pointer (bytes from the beginning of the
file) using the method RandomAccessFile of . To get the current position of the file
pointer, use the method. seek(long pos) pos getFilePointer()

RandomAccessFile Code example:

input.txt File contents:

RandomAccessFile randomAccessFile = new RandomAccessFile(new
File("input.txt"), "rw");
System.out.println(" " +
randomAccessFile.getFilePointer() + ", " + (char)
randomAccessFile.read() + " " +
randomAccessFile.getFilePointer());
// 6
randomAccessFile.seek(6);
System.out.println(" " +
randomAccessFile.getFilePointer() + ", " + (char)
randomAccessFile.read() + " " +
randomAccessFile.getFilePointer());
// 7
randomAccessFile.write(new byte[]{'H', 'I', 'J', 'K'});
// 0
randomAccessFile.seek(0);
System.out.println(" " +
randomAccessFile.getFilePointer() + ", " + (char)
randomAccessFile.read() + " " +
randomAccessFile.getFilePointer());

java
1
2
3
4
5
6
7
8
9
10

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 17/20

Output:

input.txt The file content becomes ABCDEFGHIJK .

RandomAccessFile write When writing an object, if there is already data in the
corresponding location, it will be overwritten .

input.txt Suppose the file content becomes before running the above program ABCD ,
and becomes after running it HIJK .

RandomAccessFile A common application is resuming large file uploads . What is
resumable upload? Simply put, if a file upload is paused or fails (for example, due to a
network issue), instead of resuming the upload, only the unsuccessful file segments need to
be uploaded. Segmented upload (splitting a file into multiple segments) is the foundation
of resumable uploads.

RandomAccessFile It can help us merge file fragments. The sample code is as follows:

0, A 1
6, G 7
0, A 1

RandomAccessFile randomAccessFile = new RandomAccessFile(new
File("input.txt"), "rw");
randomAccessFile.write(new byte[]{'H', 'I', 'J', 'K'});

plain
1
2
3

java
1
2

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 18/20

I covered the large file upload problem in detail in the Java Interview Guide .

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 19/20

https://javaguide.cn/zhuanlan/java-mian-shi-zhi-bei.html
https://javaguide.cn/zhuanlan/java-mian-shi-zhi-bei.html

RandomAccessFile The implementation relies on FileDescriptor (file descriptors) and
FileChannel (memory mapped files).

Recently Updated2025/2/21 13:59
Contributors: guide , MrDecadent , Raxcl , xurunhao , Zhongtao Miao , 15168387900 , Jidcoo , Guide ,

Mr.Hope , paigeman , MonsterFanSec

Copyright © 2025 Guide

9/22/25, 4:18 PM Java IO basics summary | JavaGuide

https://javaguide.cn/java/io/io-basis.html 20/20

