
Before learning NIO, you need to understand the basic theoretical knowledge of the
computer I/O model. If you don't understand it yet, you can refer to this article I wrote:
Detailed Explanation of the Java IO Model .

In the traditional Java I/O model (BIO), I/O operations are performed in a blocking
manner. That is, when a thread performs an I/O operation, it is blocked until the operation
completes. This blocking model can lead to performance bottlenecks when handling
multiple concurrent connections because a thread must be created for each connection,
and thread creation and switching are both expensive.

To address this issue, Java 1.4 introduced a new I/O model— NIO (New IO, also known as
Non-blocking IO). NIO addresses the shortcomings of synchronous blocking I/O by
providing non-blocking, buffered, channel-based I/O within standard Java code. It can
handle multiple connections using a small number of threads, significantly improving I/O
efficiency and concurrency.

The figure below is a simple comparison of BIO, NIO and AIO processing client requests
(for an introduction to AIO, you can read this article I wrote: Detailed Explanation of Java
IO Model , which is not the focus, just understand it).

About NIO

Java NIO core knowledge summary
Guide Java About 3899 words About 13 minutesJava IO, Java Basics

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 1/19

https://javaguide.cn/java/io/io-model.html
https://javaguide.cn/java/io/io-model.html
https://javaguide.cn/java/io/io-model.html
https://javaguide.cn/java/io/io-model.html
https://javaguide.cn/java/io/io-model.html
https://javaguide.cn/article/

⚠️ Note: Using NIO doesn't necessarily guarantee high performance. Its performance
advantage is primarily in high-concurrency and high-latency network environments. When
there are fewer connections, lower concurrency, or faster network transmission speeds,
NIO's performance may not necessarily outperform traditional BIO.

NIO mainly includes the following three core components:

Buffer : NIO reads and writes data through the buffer. During a read operation, the
data in the channel is filled into the buffer, and during a write operation, the data in the
buffer is written into the channel.
Channel : A channel is a bidirectional, readable and writable data transmission
channel. NIO uses channels to implement data input and output. A channel is an
abstract concept that can represent a connection between files, sockets, or other data
sources.
Selector : Allows a single thread to handle multiple channels, based on an event-driven
I/O multiplexing model. All channels can be registered with a Selector, which then
assigns threads to handle events.

The relationship between the three is shown in the figure below (it doesn’t matter if you
don’t understand it for now, it will be explained in detail later):

NIO core components

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 2/19

The following is a detailed introduction to these three components.

In traditional BIO, data reading and writing are stream-oriented, divided into byte stream
and character stream.

In Java 1.4's NIO library, all data is handled using buffers. This is a key difference between
the new library and the previous BIO library, somewhat similar to the buffered streams in
BIO. When reading data, NIO reads it directly into the buffer. When writing data, it writes
it directly into the buffer. When using NIO, both reading and writing data are performed
through the buffer.

Buffer The subclasses of are shown in the figure below. Among them, the most
commonly used is ByteBuffer , it can be used to store and operate byte data.

Buffer

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 3/19

You can think of Buffer as an array, IntBuffer where , FloatBuffer , etc. correspond to
, , etc. CharBuffer respectively . int[] float[] char[]

To understand the buffer more clearly, let's take a quick look at Buffer the four member
variables defined in the class:

The specific meanings of these four member variables are as follows:

1. Capacity (capacity): Buffer The maximum amount of data that can be stored,
Buffer set at creation time and cannot be changed;

2. Limit (limit): Buffer The boundary of the data that can be read/written. In write
mode, limit it represents the maximum amount of data that can be written, generally

public abstract class Buffer {
 // Invariants: mark <= position <= limit <= capacity
 private int mark = -1;
 private int position = 0;
 private int limit;
 private int capacity;
}

java
1
2
3
4
5
6
7

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 4/19

equal to capacity (can limit(int newLimit) be set through methods); in read
mode, limit it is equal to the actual size of the data written to the buffer.

3. Position (position): The position (index) of the next data that can be read or written.
When switching from write mode to read mode (flip), position it will be reset to zero
so that reading and writing can start from the beginning.

4. Marker (mark): Buffer allows the position to be directly positioned at the marker,
which is an optional attribute;

Moreover, the above variables satisfy the following relationship: 0 <= mark <= position
<= limit <= capacity .

Buffers have two modes: read mode and write mode, used to read and write data to the
buffer, respectively. When a buffer is created, it is in write mode by default flip() . You
can switch to read mode by calling Buffer() . To switch back to write mode, you can call the
Buffer() or Buffer clear() () compact() methods.

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 5/19

Buffer Objects cannot new be created by calling constructors and can only be
instantiated through static methods Buffer .

Here ByteBuffer we take as an example:

The two core methods of Buffer are:

1. get : Read data from the buffer
2. put : Write data to the buffer

In addition to the above two methods, other important methods are:

flip : Switches the buffer from write mode to read mode, which limit sets the value
of to the current position value of and position sets the value of to 0.
clear : Clear the buffer, switch the buffer from read mode to write mode, and
position set the value of to 0 and limit the value of to capacity the value of .

…

//
public static ByteBuffer allocate(int capacity);
//
public static ByteBuffer allocateDirect(int capacity);

java
1
2
3
4

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 6/19

The process of data change in Buffer:

import java.nio.*;

public class CharBufferDemo {
 public static void main(String[] args) {
 // 8 CharBuffer
 CharBuffer buffer = CharBuffer.allocate(8);
 System.out.println(" ");
 printState(buffer);

 // buffer 3
 buffer.put('a').put('b').put('c');
 System.out.println(" 3 ");
 printState(buffer);

 // flip() buffer position
0,limit 3
 buffer.flip();
 System.out.println(" flip() ");
 printState(buffer);

 //
 while (buffer.hasRemaining()) {
 System.out.print(buffer.get());
 }

 // clear() position 0 limit
 capacity

 buffer.clear();
 System.out.println(" clear() ");
 printState(buffer);

 }

 // buffer capacity limit position mark
 private static void printState(CharBuffer buffer) {
 System.out.print("capacity: " + buffer.capacity());
 System.out.print(", limit: " + buffer.limit());

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 7/19

Output:

To help you understand, I drew a picture showing the process capacity and changes
limit at position each stage.

 System.out.print(", position: " + buffer.position());
 System.out.print(", mark : " + buffer.mark());
 System.out.println("\n");
 }
}

capacity: 8, limit: 8, position: 0

3
capacity: 8, limit: 8, position: 3

buffer

flip()
capacity: 8, limit: 3, position: 0

abc

clear()
capacity: 8, limit: 8, position: 0

bash
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 8/19

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 9/19

A Channel is a channel that establishes a connection with a data source (such as a file,
network socket, etc.). We can use it to read and write data, just like opening a water pipe
and letting data flow freely in the Channel.

Streams in BIO are unidirectional and are classified as InputStream input streams and
OutputStream output streams. Data is transmitted in one direction only. Channels differ

from streams in that they are bidirectional and can be used for reading, writing, or both.

The Channel interacts with the Buffer introduced earlier. During a read operation, the data
in the Channel is filled into the Buffer, while during a write operation, the data in the
Buffer is written into the Channel.

In addition, because Channel is full-duplex, it can better map the API of the underlying
operating system than streams. In particular, in the UNIX network programming model,
the channels of the underlying operating system are full-duplex and support both read and
write operations.

Channel The subclasses are shown below.

Channel

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 10/19

Among them, the most commonly used are the following types of channels:

FileChannel : File access channel;
SocketChannel , ServerSocketChannel : TCP communication channel;
DatagramChannel : UDP communication channel;

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 11/19

The two core methods of Channel are:

1. read : Read data and write it into Buffer.
2. write : Write the data in the Buffer to the Channel.

Here we take as FileChannel an example to demonstrate how to read file data.

The Selector is a key component in NIO, allowing a single thread to handle multiple
Channels. The Selector is based on an event-driven I/O multiplexing model. Its main
operating principle is: Channel events are registered through the Selector, and the Selector

Selector

RandomAccessFile reader = new
RandomAccessFile("/Users/guide/Documents/test_read.in", "r"))
FileChannel channel = reader.getChannel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
channel.read(buffer);

java
1
2
3
4

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 12/19

continuously polls the registered Channels. When an event occurs, such as a new TCP
connection, read, or write event on a Channel, the Channel enters the Ready state and is
polled by the Selector. The Selector adds the relevant Channels to the Ready Set. The
SelectionKey allows you to obtain a collection of Ready Channels, and then perform
corresponding I/O operations on these Ready Channels.

A multiplexer Selector can poll multiple Channels simultaneously. Since the JDK uses
epoll() instead of the traditional select implementation, it does not have a maximum

connection handle 1024/2048 limit. This means that only one thread is needed to poll the
Selector and connect to thousands of clients.

Selector can listen for the following four event types:

1. SelectionKey.OP_ACCEPT : Indicates that the channel accepts the connection event,
which is usually used ServerSocketChannel .

2. SelectionKey.OP_CONNECT : Indicates that the channel has completed the connection
event, which is usually used SocketChannel .

3. SelectionKey.OP_READ : Indicates that the channel is ready for reading, that is, there
is data to be read.

4. SelectionKey.OP_WRITE : Indicates that the channel is ready for writing, that is, data
can be written.

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 13/19

Selector It is an abstract class. You can create a Selector instance by calling its
open() static methods. Selector can monitor the status SelectableChannel of multiple

at the same time IO and is IO the core of non-blocking .

A Selector instance has three SelectionKey collections:

1. All SelectionKey collections: represents the ones registered on this Selector
Channel . This collection can be keys() returned by the method.

2. The selected SelectionKey collection: represents all Channels that can select() be
obtained through the method and need to be processed . This collection can be returned
through . IO selectedKeys()

3. Cancelled SelectionKey collection: represents all the canceled registration
relationships Channel . When the method is executed next time select() , these
Channel corresponding SelectionKey will be completely deleted. The program

usually does not need to directly access this collection, and there is no exposed access
method.

Here is a brief demonstration of how to traverse the selected SelectionKey collection and
process it:

Selector also provides a series of select() related methods:

int select() : Monitors all registered ones Channel . When there is an operation
that needs to be processed among them IO , this method returns and

Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
while (keyIterator.hasNext()) {
 SelectionKey key = keyIterator.next();
 if (key != null) {
 if (key.isAcceptable()) {
 // ServerSocketChannel
 } else if (key.isConnectable()) {
 //
 } else if (key.isReadable()) {
 // Channel
 } else if (key.isWritable()) {
 // Channel Buffer
 }
 }
 keyIterator.remove();
}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 14/19

SelectionKey adds the corresponding to the selected SelectionKey set. This method
returns Channel the number of these.
int select(long timeout) : You can set the timeout period for select() the

operation.
int selectNow() : Executes an operation that returns immediately select() .

Compared with the method without parameters select() , this method will not block
the thread.
Selector wakeup() : Make a method that has not yet returned select() return

immediately.
…

A simple example of using Selector to implement network reading and writing:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;

public class NioSelectorExample {

 public static void main(String[] args) {
 try {
 ServerSocketChannel serverSocketChannel =
ServerSocketChannel.open();
 serverSocketChannel.configureBlocking(false);
 serverSocketChannel.socket().bind(new
InetSocketAddress(8080));

 Selector selector = Selector.open();
 // ServerSocketChannel Selector OP_ACCEPT
 serverSocketChannel.register(selector,
SelectionKey.OP_ACCEPT);

 while (true) {
 int readyChannels = selector.select();

 if (readyChannels == 0) {

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 15/19

 continue;
 }

 Set<SelectionKey> selectedKeys = selector.selectedKeys();
 Iterator<SelectionKey> keyIterator =
selectedKeys.iterator();

 while (keyIterator.hasNext()) {
 SelectionKey key = keyIterator.next();

 if (key.isAcceptable()) {
 //
 ServerSocketChannel server = (ServerSocketChannel)
key.channel();
 SocketChannel client = server.accept();
 client.configureBlocking(false);

 // Selector OP_READ
 client.register(selector, SelectionKey.OP_READ);
 } else if (key.isReadable()) {
 //
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 int bytesRead = client.read(buffer);

 if (bytesRead > 0) {
 buffer.flip();
 System.out.println(" " +new
String(buffer.array(), 0, bytesRead));
 // Selector OP_WRITE
 client.register(selector, SelectionKey.OP_WRITE);
 } else if (bytesRead < 0) {
 //
 client.close();
 }
 } else if (key.isWritable()) {
 //
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.wrap("Hello,
Client!".getBytes());
 client.write(buffer);

 // Selector OP_READ

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 16/19

In this example, we create a simple server that listens on port 8080 and uses Selector to
handle connection, read, and write events. When receiving data from the client, the server
reads the data and prints it to the console, then replies "Hello, Client!" to the client.

Zero copy is a common method to improve IO operation performance. Top open source
projects such as ActiveMQ, Kafka, RocketMQ, QMQ, Netty, etc. all use zero copy.

Zero copy means that when a computer performs I/O operations, the CPU does not need to
copy data from one storage area to another, thereby reducing context switches and CPU
copy time. In other words, zero copy primarily addresses the problem of the operating
system frequently copying data when processing I/O operations. Common zero copy
implementation technologies include: mmap+write , , sendfile and sendfile + DMA
gather copy .

The following figure shows a comparison of various zero-copy technologies:

CPU
copy

DMA
copy

System
calls

Context
Switching

Traditional
methods 2 2 read+write 4

mmap+write 1 2 mmap+write 4

sendfile 1 2 sendfile 2

NIO Zero Copy

 client.register(selector, SelectionKey.OP_READ);
 }

 keyIterator.remove();
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

73
74
75
76

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 17/19

CPU
copy

DMA
copy

System
calls

Context
Switching

sendfile + DMA
gather copy 0 2 sendfile 2

As can be seen, both traditional I/O methods and those using zero-copy require two DMA
(Direct Memory Access) copies. This is because both DMA operations rely on hardware.
Zero-copy primarily reduces CPU copies and context switches.

Java supports zero copy:

MappedByteBuffer NIO mmap provides a zero-copy implementation based on memory
mapping (). Under the hood, it actually invokes the Linux kernel's mmap system call. It
can map a file or part of a file into memory, forming a virtual memory file. This allows
direct access to data in memory without requiring system calls to read and write files.
FileChannel This transferTo()/transferFrom() is an NIO
sendfile implementation based on the zero-copy send file method (sendFile()). It

actually uses a Linux kernel sendfile system call. It can send file data directly from
disk to the network without going through a user-space buffer. For more information on
FileChannel its usage, please refer to the article: Java NIO FileChannel Usage .

Code example:

In this article, we mainly introduced the core knowledge points of NIO, including NIO's
core components and zero copy.

Summarize

private void loadFileIntoMemory(File xmlFile) throws IOException {
 FileInputStream fis = new FileInputStream(xmlFile);
 // FileChannel
 FileChannel fc = fis.getChannel();
 // FileChannel.map() MappedByteBuffer
 MappedByteBuffer mmb = fc.map(FileChannel.MapMode.READ_ONLY, 0,
fc.size());
 xmlFileBuffer = new byte[(int)fc.size()];
 mmb.get(xmlFileBuffer);
 fis.close();
}

java
1
2
3
4
5
6
7
8
9
10

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 18/19

https://www.cnblogs.com/robothy/p/14235598.html
https://www.cnblogs.com/robothy/p/14235598.html

If you need to use NIO to build a network application, we recommend against using native
NIO directly, as programming is complex and functionality is limited. Instead, we
recommend using a mature NIO-based network programming framework, such as Netty.
Netty offers several optimizations and extensions based on NIO, including support for
multiple protocols and SSL/TLS.

A brief analysis of Java NIO: https://tech.meituan.com/2016/11/04/nio.html

Interviewer: Do you know Java NIO? https://mp.weixin.qq.com/s/mZobf-
U8OSYQfHfYBEB6KA

Java NIO: Buffer, Channel and Selector: https://www.javadoop.com/post/java-nio

Recently Updated2024/7/17 16:02
Contributors: dandelionstar , Guide , Mr.Hope , aucub , FengWei2000 , Guevara

refer to

Copyright © 2025 Guide

9/22/25, 4:19 PM Java NIO core knowledge summary | JavaGuide

https://javaguide.cn/java/io/nio-basis.html#buffer-缓冲区 19/19

https://tech.meituan.com/2016/11/04/nio.html
https://tech.meituan.com/2016/11/04/nio.html
https://mp.weixin.qq.com/s/mZobf-U8OSYQfHfYBEB6KA
https://mp.weixin.qq.com/s/mZobf-U8OSYQfHfYBEB6KA
https://mp.weixin.qq.com/s/mZobf-U8OSYQfHfYBEB6KA
https://www.javadoop.com/post/java-nio
https://www.javadoop.com/post/java-nio

