
1. Method Area (store class metadata), Runtime
Constant Pool (bind value), String Constant Pool

2. Program Counter, Java Virtual Machine Stack,
Native Method Stack, Heap

-​ Program Counter: per thread, store the last executed
command.

-​ Java Virtual Machine Stack: per thread, stack to store
variables.

-​ Native Method Stack: stack of C/C++ programs.
-​ Heap: store object

3. JVM Steps During Object Creation (with new)

1.​Class loading & linking (if not already loaded)​

○​ ClassLoader loads the .class file.​

○​ JVM verifies, prepares, and resolves the class.​

2.​Memory allocation (Heap)​

○​ JVM allocates memory for the new object.​

○​ Memory size = sum of instance fields + object header.​

3.​Default initialization​

○​ All fields initialized to default values (0, null, false).​

4.​Constructor execution​

○​ Explicit constructor runs.​

○​ Instance variables initialized.​

5.​Reference assignment​

○​ The variable (p in our case) stores the reference (on
the stack).​

○​

4. Memory Layout of an Object
Each object in JVM typically has:

1.​Object Header​

○​ Mark Word (hash code, GC info, lock info).​

○​ Class pointer (points to class metadata in Method
Area/Metaspace).​

2.​Instance Data​

○​ Values of instance fields.​

3.​Padding​

○​ To align object size to 8 bytes.

	1. Method Area (store class metadata), Runtime Constant Pool (bind value), String Constant Pool
	2. Program Counter, Java Virtual Machine Stack, Native Method Stack, Heap
	-​Program Counter: per thread, store the last executed command.
	-​Java Virtual Machine Stack: per thread, stack to store variables.
	-​Native Method Stack: stack of C/C++ programs.
	-​Heap: store object

	3. JVM Steps During Object Creation (with new)
	1.​Class loading & linking (if not already loaded)​
	○​ClassLoader loads the .class file.​
	○​JVM verifies, prepares, and resolves the class.​
	2.​Memory allocation (Heap)​
	○​JVM allocates memory for the new object.​
	○​Memory size = sum of instance fields + object header.​
	3.​Default initialization​
	○​All fields initialized to default values (0, null, false).​
	4.​Constructor execution​
	○​Explicit constructor runs.​
	○​Instance variables initialized.​
	5.​Reference assignment​
	○​The variable (p in our case) stores the reference (on the stack).​

	4. Memory Layout of an Object
	Each object in JVM typically has:
	1.​Object Header​
	○​Mark Word (hash code, GC info, lock info).​
	○​Class pointer (points to class metadata in Method Area/Metaspace).​
	2.​Instance Data​
	○​Values of instance fields.​
	3.​Padding​
	○​To align object size to 8 bytes.
	

