1. Map do not support Stream
2. Parallel Stream is handle in multi-thread, do not
guarantee order

% 2. Parallel Stream

Created with collection.parallelStream() or stream().parallel() .

Parallel execution: splits elements into multiple chunks and processes them in different threads
(using ForkJoinPool).

No guarantee of order (unless you use ordered operations like .forEachOrdered() ).

Best for large datasets or CPU-heavy operations.

& Example:
java (9 Copy code

java.util.Arrays;
java.util.List;

{
(Stringl[] args) {
List<String> names = Arrays.asList(

names.parallelStream()

.map(String: : toUpperCase)
.forEach(System.out::println);

May print in different orders, and runs on multiple threads.




3. Sequence Stream is in order

1. Stream

Created with collection.stream() .

Sequential execution: processes elements one by one in a single thread.
Deterministic order (follows the order of the collection, like List index order).
Suitable for small datasets or when thread-safety/order matters.

& Example:

java (9 Copy code

java.util.Arrays;
java.util.List;

{
(String[] args) {
List<String> names = Arrays.asList(

names.stream()

.map(String: : toUpperCase)
.forEach(System.out::println};

Runs in one thread, output order is predictable.




	1.​ Map do not support Stream 
	2.​ Parallel Stream is handle in multi-thread, do not guarantee order 
	3.​ Sequence Stream is in order 

