9/22/25,11:30 PM

Summary of the most important

JVM parameters

2 Guide &® Java € JvM @ About 3272 words X About 11 minutes

This article is translated by JavaGuide from https://www.baeldung.com/jvm-

parameters
Documentation parameters :

and has been extensively supplemented.

Summary of the most important JVM parameters | JavaGuide

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html

JDK version: Mainly 1.8, common parameters of new versions will also be added

In this article, we will learn about some of the most commonly used parameter
configurations in the Java Virtual Machine (JVM) to help you better understand and tune

the operating environment of Java applications.

Heap memory related

The Java heap is the largest area of memory managed by the JVM, shared by all

threads and created when the virtual machine starts. This memory area's sole
purpose is to store object instances. Almost all object instances and arrays

require memory allocated on the heap.

l - Runtime Data Area (Total Size)
} - -Xmx - l
} . Xms -

| -XX:MaxNewSize

} -XX:NewSize

Heap Space

- -XX:MaxPermSize -

- -XX:PermSize -

Method Area

Native Area

Runtime Constant Pool

To
Survivor 1

Tenured

Fram
Survivor 0

Field & Method Data

Code

Virtual

Thread 1..N

PC
Stack

Native
Stack

Compile

Native

Virtual

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i5% B 3 N 77 K /N-xms-Fl-xmx

1/10

https://www.baeldung.com/jvm-parameters
https://www.baeldung.com/jvm-parameters
https://www.baeldung.com/jvm-parameters
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://javaguide.cn/article/

9/22/25,11:30 PM Summary of the most important JVM parameters | JavaGuide

Setting the heap memory size (-Xms and -Xmx)

Setting the initial and maximum heap memory sizes based on the actual needs of the
application is one of the most common practices in performance tuning. It is
recommended to explicitly set these two parameters, and it is generally
recommended to set them to the same value to avoid the performance overhead
caused by dynamic adjustment of the heap memory at runtime.

Use the following parameters to set it up:

1 -Xms<heap size>[unit] # I®RE JVM #iaHEAR/ bash
-Xmx<heap size>[unit] # && JWM HmAHERN

N

e <heap size> : Specifies the specific value of memory.
e [unit] : Specifies the unit of memory, such as g (GB), m (MB), k (KB).

Example: Set the JVM's initial and maximum heap sizes to 4GB:

1 —Xms4G —Xmx4G bash

Set the Young Generation Memory Size

According to Oracle's official documentation , after configuring the total available heap

memory, the second most influential factor is Young Generation the proportion of heap
memory used. By default, the minimum size of YG is 1310 MB and the maximum size is
unlimited .

The new generation memory size can be set in two ways:

1. Adoption -XX:NewSize and -XX:MaxNewSize designation

-XX:NewSize=<young size>[unit] # IREFERBEARN bash
—-XX:MaxNewSize=<young size>[unit] # BEBHEREAKN

Example: Set the minimum size of the new generation to 512MB and the maximum si~~
to 1024MB:

1 —XX:NewSize=512m —-XX:MaxNewSize=1024m bash

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx 2/10

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/sizing.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/sizing.html

9/22/25,11:30 PM Summary of the most important JVM parameters | JavaGuide

2. By -Xmn<young size>[unit] specifying

Example: To fix the new generation size to 512MB:
1 —-Xmn512m bash

An important rule of thumb in GC tuning strategies is as follows:

Try to allocate and reclaim memory in the Young Generation for newly created objects,
as Minor GC is typically much less expensive than Full GC. Analyze GC logs to
determine whether Young Generation space allocation is appropriate. If a large number
of new objects are prematurely promoted to the Old Generation (promotion), adjust the
Young Generation size appropriately using [-Xmn Jor[-] XX:NewSize/-
XX:MaxNewSize to minimize the number of objects that enter the Old Generation
directly.

In addition, you can also use -XX:NewRatio=<int> the parameter to set the memory
size ratio of the old generation and the new generation (excluding the
Survivor area) .

For example, -XX:NewRatio=2 (default value) means the ratio of old generation to new
generation is 2:1. That is, the new generation occupies 1/3 of the total heap size.

1 —-XX:NewRatio=2 bash

Set the PermGen/Metaspace size

Starting from Java 8, if we do not specify the size of Metaspace, as more
classes are created, the VM will exhaust all available system memory (this
does not happen with the PermGen).

Before JDK 1.8, when the permanent generation had not yet been completely removed, the
following parameters were usually used to adjust the method area size:

| “XX:PermSize=N #75EK (KZR) PAN bash
> -XX:MaxPermSize=N #75/EAX (KAL) &ANN, BITXMEFHL

OutOfMemoryError J%:java.lang.0utOfMemoryError: PermGen

Relatively speaking, garbage collection rarely occurs in this area, but it does not mean
the data will "exist forever" after entering the method area.

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx 3/10

9/22/25,11:30 PM Summary of the most important JVM parameters | JavaGuide

In JDK 1.8, the method area (HotSpot's permanent generation) was
completely removed (this started in JDK 1.7) and replaced by the metaspace,
which uses local memory.

Here are some common parameters:

1 -XX:MetaspaceSize=N #8E Metaspace AR/ (BE— PN ERNRK, EEHA%EE
5 %)
-XX:MaxMetaspaceSize=N #i8& Metaspace RIFmAK/

% Fix (see: issue#1947):

1. -XX:MetaspaceSize Not the initial capacity: The initial capacity of the Metaspace is
not -XX:MetaspaceSize a setting. Regardless of -XX:MetaspaceSize the configured
value, for a 64-bit JVM, the initial capacity of the Metaspace is usually a fixed small value
(Oracle documentation mentions about 12MB to 20MB, and the actual observation is
about 20.8MB).

You can refer to the Oracle official document Other Considerations mentioned:

Specify a higher value for the option MetaspaceSize to avoid early garbage collections
induced for class metadata. The amount of class metadata allocated for an application is
application-dependent and general guidelines do not exist for the selection of
MetaspaceSize. The default size of MetaspaceSize is platform-dependent and ranges
from 12 MB to about 20 MB.

The default size of MetaspaceSize depends on the platform and ranges from 12 MB to
approximately 20 MB.

Also, take a look at this experiment: Misunderstanding of the JVM parameter

MetaspaceSize

2. Expansion and Full GC: When Metaspace usage increases and reaches -
XX:MetaspaceSize a specified threshold for the first time, a Full GC is triggered.
Thereafter, the JVM dynamically adjusts the threshold for triggering GC. If Metaspace
continues to grow, a Full GC may still be triggered each time a new threshold is reached
and expansion is required (the specific behavior depends on the garbage collector and
version). The garbage collector internally _capacity_until_GC determines whether the
Metaspace area has reached the threshold based on variables. The initialization code is as

follows: .

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx 4/10

https://github.com/Snailclimb/JavaGuide/issues/1947
https://github.com/Snailclimb/JavaGuide/issues/1947
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html
https://mp.weixin.qq.com/s/jqfppqqd98DfAJHZhFbmxA
https://mp.weixin.qq.com/s/jqfppqqd98DfAJHZhFbmxA
https://mp.weixin.qq.com/s/jqfppqqd98DfAJHZhFbmxA

9/22/25,11:30 PM Summary of the most important JVM parameters | JavaGuide

void MetaspaceGC::initialize() { ¢
// Set the high-water mark to MaxMetapaceSize during VM
initialization since
// we can't do a GC during initialization.

u p W N P

_capacity_until_GC = MaxMetaspaceSize;

}

3. -XX:MaxMetaspaceSize Importance: If you don't explicitly set -
XX:MaxMetaspaceSize , the maximum size of the Metaspace is theoretically
limited by available native memory. In extreme cases (such as a class loader
leak causing constant class loading), this can indeed exhaust a significant
amount of native memory . Therefore, setting a reasonable -
XX:MaxMetaspaceSize upper limit is strongly recommended to prevent system impact.

Related reading: Issue Correction: MaxMetaspaceSize will not exhaust memory if size is

not specified #1204

Garbage collection related

Selecting a garbage collector

Choosing the right garbage collector (GC) is crucial for your application's throughput and
latency. For a detailed introduction to garbage collection algorithms and collectors, see my
article: JVM Garbage Collection Explained (Key Points)

JVM provides multiple GC implementations suitable for different scenarios:

e Serial GC (Serial Garbage Collector): Single-threaded GC, suitable for client mode
or single-core CPU environment. Parameters: -XX:+UseSerialGC .

e Parallel GC (Parallel Garbage Collector): Multi-threaded execution of Minor GC
for the young generation and, optionally, Full GC for the old generation -
XX:+UseParallel0ldGC . Focused on throughput, it is the default GC for JDK 8.
Parameters: -XX:+UseParallelGC .

¢ CMS GC (Concurrent Mark Sweep): Targets minimal collection pause times,
allowing most GC phases to execute concurrently with user threads. Suitable for
applications with high response time requirements. Deprecated in JDK 9 and removed
in JDK 14. Parameters: —XX:+UseConcMarkSweepGC .

¢ G1 GC (Garbage-First Garbage Collector): The default GC for JDK 9 and later. ..
divides the heap into multiple regions, balancing throughput and pause times, and
attempts to complete GC within predictable pause times. Parameters: —-XX:+UseG1GC .

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx 5/10

https://github.com/Snailclimb/JavaGuide/issues/1204
https://github.com/Snailclimb/JavaGuide/issues/1204
https://github.com/Snailclimb/JavaGuide/issues/1204
https://javaguide.cn/java/jvm/jvm-garbage-collection.html
https://javaguide.cn/java/jvm/jvm-garbage-collection.html

9/22/25,11:30 PM

Summary of the most important JVM parameters | JavaGuide

e ZGC: A newer, low-latency GC that aims to reduce GC pause times to milliseconds or

even sub-milliseconds. It requires support from a newer JDK version. Parameters

(specific parameters may vary with version): -XX:+UseZGC , —XX:+UseShenandoahGC .

GC logging

In a production environment or when troubleshooting GC issues, be sure to enable GC

logging . Detailed GC logs are key to analyzing and resolving GC issues.

The following are some recommended GC log parameters (applicable to common versions

such as JDK 8/11):
| BEENERRE — bash
5 # fTEN¥A 6C 58
3 -XX:+PrintGCDetails
4 # $7ED GC RAMMIEE (HBXF IVM Sshid(E)
5 # —XX:+PrintGCTimeStamps
6 # $TEN GC &RAERBEAFIETE (EEHMA)
v -XX:+PrintGCDateStamps
3 # EE GC HEXMHNWELERE, st BIH L BHAR B2
9 -Xloggc:/path/to/gc—%t. log
10
1 - BENENEE ——
12 # FTEINRFIRD T (BB THIBNREAEERNNER)
13 -XX:+PrintTenuringDistribution
14 # 7 GC HIBHEHES
15 —-XX:+PrintHeapAtGC
16 # FTENSMERS|IA (BB//5B/E) HNAEER
17 -XX:+PrintReferenceGC
18 # FTENR AEERTE (Stop-The-World, STW)
19 -XX:+PrintGCApplicationStoppedTime
20
21 # ——— GC HEXHRNEE ——
22 # 2R GC HENXMHREN
23 -XX:+UseGCLogFileRotation
24 # RERNASGXHNHE (F1W, RE&IE 14 1)
25 -XX:NumberQfGCLogFiles=14
26 # RES T ABEXHFRSEAKR (i, 50MB)
27 —-XX:GCLogFileSize=50M ‘
28
29
30

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx

6/10

9/22/25,11:30 PM

31
32

Summary of the most important JVM parameters | JavaGuide

——— PNERHHBNISURECE ———

¥1EIRZE= (Safepoint) ZIHERE (BEIFHIT STW REA)
—-XX:+PrintSafepointStatistics

—-XX:PrintSafepointStatisticsCount=1

Note: JDK 9 and later versions introduced a unified JVM logging framework (—-X1log),

which has different configuration methods. However, the above -Xloggc and rolling

parameters are generally still compatible or have corresponding new parameters.

Dealing with OOM

It is very common for large applications to face out of memory errors which in turn leads to

application crash. This is a very critical scenario and it is difficult to reproduce and resolve

the issue.

That's why the JVM provides some parameters that dump the heap memory into a physical

file that can be used later to find leaks:

O 0 N O U1l p W N P

e e el o e
O Ul WN R S

TERE OOM B4 Pl EIEAE S bash
—-XX:+HeapDumpOnOQutOfMemoryError

EEBEMHNRLEREZ., <pid> SWERNHIE ID
—XX:HeapDumpPath=/path/to/heapdump/java_pid<pid>.hprof
f5l: —XX:HeapDumpPath=/data/dumps/

(0iEk) &% OOM BIHITIEERYdr L TUMIA

N, REEEBNHNZRERRS (FEEER)

-XX:0nOutOfMemoryError="<command> <args>"

f5l: -XX:0nOutOfMemoryError="sh /path/to/notify.sh"

(k) BA GC AHREHIGE

R GC WESSHELEAIESE (BN 98%) BEIBIARERM (BAINMNF 2% #HERW
7)),

RIBEIMLE OOM, BHIENFAKESERIEE GC A,

-XX:+UseGCOverheadLimit

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx

7/10

9/22/25,11:30 PM Summary of the most important JVM parameters | JavaGuide

Other common parameters

e -—server : Explicitly enable the HotSpot VM in Server mode. (Usually the default on
64-bit JVMs).

-XX:+UseStringDeduplication (JDK 8u20+) Attempts to identify and share

char[] String objects with the same underlying array to reduce memory usage. This is

useful for scenarios with a large number of repeated strings.

e —XX:SurvivorRatio=<ratio> : Sets the size ratio of the Eden area to a single Survivor
area. For example -XX:SurvivorRatio=8 , Eden:Survivor = 8:1.

e —XX:MaxTenuringThreshold=<threshold> : Sets the maximum age threshold for
objects to be promoted from the young generation to the old generation (the age of an
object increases by 1 each time it survives a Minor GC). The default value is usually 15.

e —XX:+DisableExplicitGC : Disable explicit calls in code System.gc() .Itis
recommended to enable this feature to avoid triggering unnecessary Full GCs.

e —XX:+UselLargePages : (Requires OS support) Try using large memory pages (e.g. 2MB
instead of 4KB). This may improve performance for memory-intensive applications, but
requires careful testing.

e - XX:MinHeapFreeRatio=<percent> / -XX:MaxHeapFreeRatio=<percent> : Controls
the minimum/maximum percentage of heap memory that remains free after GC, used
for dynamic heap resizing (if -Xms and -Xmx are not equal). It is generally
recommended to set -Xms and —Xmx to be the same to avoid resizing overhead.

Note: The following parameters may be deprecated, removed, or enabled by
default in modern JVM versions and do not need to be set manually :

—-XX:+UselLWPSynchronization : An older synchronization strategy option, modern
JVMs usually have more optimized implementations.

-XX:LargePageSizeInBytes : Usually -XX:+UselLargePages determined
automatically by or through OS configuration.

-XX:+UseStringCache : Removed.

-XX:+UseCompressedStrings : Superseded by the Compact Strings feature, which is
enabled by default in Java 9 and later.

-XX:+0ptimizeStringConcat : String concatenation optimization (invokedynamic) is

the default behavior in Java 9 and later.

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx 8/10

9/22/25,11:30 PM Summary of the most important JVM parameters | JavaGuide

Summarize

This article provides a practical guide to common JVM parameter configurations for Java
developers, aiming to help readers understand and optimize the performance and stability

of Java applications. It highlights the following aspects:

1. Heap memory configuration: It is recommended to explicitly set the initial and
maximum heap memory (-Xms , - Xmx , usually set to the same) and the new
generation size (-Xmn or —-XX:NewSize/-XX:MaxNewSize), which is crucial for GC
performance.

2. Metaspace Management (Java 8+): Clarified -XX:MetaspaceSize the actual role

of (the threshold that triggers the first Full GC, not the initial capacity), and strongly
recommends setting -XX:MaxMetaspaceSize to prevent potential native memory
exhaustion.

3. **Garbage Collector Selection and Logging:** This section describes the applicable

scenarios of different GC algorithms and emphasizes the necessity of enabling detailed
GClogging (-Xloggc , -XX:+PrintGCDetails etc.) for troubleshooting in production

and test environments.
4. OOM Troubleshooting: This section describes how to use -
XX:+HeapDumpOnOutOfMemoryError parameters such as to automatically generate a

heap dump file when an OOM occurs, so that you can perform subsequent memory leak

analysis.
5. Other Parameters: This section briefly introduces other useful parameters such as
string deduplication, and points out the current status of some old parameters.

For specific troubleshooting and tuning cases, please refer to this article compiled by the
author: JVM online problem troubleshooting and performance tuning cases

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i% & HE P 77 K /N-xms-Fl-xmx

9/10

https://javaguide.cn/java/jvm/jvm-in-action.html
https://javaguide.cn/java/jvm/jvm-in-action.html

9/22/25,11:30 PM Summary of the most important JVM parameters | JavaGuide

PDF
$PRE
ik
J\BR3L

Recently Updated2025/4/25 06:41

Contributors: Snailclimb , guide , drlifel., TommyMerlin , 1036956372 , Guide , Erzbir , Mr.Hope ,
paigeman , aucub , seven17777777 , hulingfeng , 1312255201

Copyright © 2025 Guide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#i & 3 P 77 K /N-xms-Fil-xmx 10/10

