
This article is translated by JavaGuide from https://www.baeldung.com/jvm-
parameters and has been extensively supplemented.
Documentation parameters :
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
JDK version: Mainly 1.8, common parameters of new versions will also be added

In this article, we will learn about some of the most commonly used parameter
configurations in the Java Virtual Machine (JVM) to help you better understand and tune
the operating environment of Java applications.

The Java heap is the largest area of ​​memory managed by the JVM, shared by all
threads and created when the virtual machine starts. This memory area's sole
purpose is to store object instances. Almost all object instances and arrays
require memory allocated on the heap.

Heap memory related

Summary of the most important
JVM parameters

Guide Java About 3272 words About 11 minutesJVM

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 1/10

https://www.baeldung.com/jvm-parameters
https://www.baeldung.com/jvm-parameters
https://www.baeldung.com/jvm-parameters
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://javaguide.cn/article/

Setting the initial and maximum heap memory sizes based on the actual needs of the
application is one of the most common practices in performance tuning. It is
recommended to explicitly set these two parameters, and it is generally
recommended to set them to the same value to avoid the performance overhead
caused by dynamic adjustment of the heap memory at runtime.

Use the following parameters to set it up:

<heap size> : Specifies the specific value of memory.
[unit] : Specifies the unit of memory, such as g (GB), m (MB), k (KB).

Example: Set the JVM's initial and maximum heap sizes to 4GB:

According to Oracle's official documentation , after configuring the total available heap
memory, the second most influential factor is Young Generation the proportion of heap
memory used. By default, the minimum size of YG is 1310 MB and the maximum size is
unlimited .

The new generation memory size can be set in two ways:

1. Adoption -XX:NewSize and -XX:MaxNewSize designation

Example: Set the minimum size of the new generation to 512MB and the maximum size
to 1024MB:

Setting the heap memory size (-Xms and -Xmx)

Set the Young Generation Memory Size

-Xms<heap size>[unit] # 设置 JVM 初始堆大小
-Xmx<heap size>[unit] # 设置 JVM 最大堆大小

-Xms4G -Xmx4G

-XX:NewSize=<young size>[unit] # 设置新生代初始大小
-XX:MaxNewSize=<young size>[unit] # 设置新生代最大大小

-XX:NewSize=512m -XX:MaxNewSize=1024m

bash
1
2

bash
1

bash
1
2

bash
1

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 2/10

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/sizing.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/sizing.html

2. By -Xmn<young size>[unit] specifying

Example: To fix the new generation size to 512MB:

An important rule of thumb in GC tuning strategies is as follows:

Try to allocate and reclaim memory in the Young Generation for newly created objects,
as Minor GC is typically much less expensive than Full GC. Analyze GC logs to
determine whether Young Generation space allocation is appropriate. If a large number
of new objects are prematurely promoted to the Old Generation (promotion), adjust the
Young Generation size appropriately using [-Xmn] or [-] XX:NewSize/-
XX:MaxNewSize to minimize the number of objects that enter the Old Generation
directly.

In addition, you can also use -XX:NewRatio=<int> the parameter to set the memory
size ratio of the old generation and the new generation (excluding the
Survivor area) .

For example, -XX:NewRatio=2 (default value) means the ratio of old generation to new
generation is 2:1. That is, the new generation occupies 1/3 of the total heap size.

Starting from Java 8, if we do not specify the size of Metaspace, as more
classes are created, the VM will exhaust all available system memory (this
does not happen with the PermGen).

Before JDK 1.8, when the permanent generation had not yet been completely removed, the
following parameters were usually used to adjust the method area size:

Relatively speaking, garbage collection rarely occurs in this area, but it does not mean that
the data will "exist forever" after entering the method area.

Set the PermGen/Metaspace size

-Xmn512m

-XX:NewRatio=2

-XX:PermSize=N #方法区 (永久代) 初始大小
-XX:MaxPermSize=N #方法区 (永久代) 最大大小,超过这个值将会抛出
OutOfMemoryError 异常:java.lang.OutOfMemoryError: PermGen

bash
1

bash
1

bash
1
2

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 3/10

In JDK 1.8, the method area (HotSpot's permanent generation) was
completely removed (this started in JDK 1.7) and replaced by the metaspace,
which uses local memory.

Here are some common parameters:

🐛 Fix (see: issue#1947) :

1. -XX:MetaspaceSize Not the initial capacity: The initial capacity of the Metaspace is
not -XX:MetaspaceSize a setting. Regardless of -XX:MetaspaceSize the configured
value, for a 64-bit JVM, the initial capacity of the Metaspace is usually a fixed small value
(Oracle documentation mentions about 12MB to 20MB, and the actual observation is
about 20.8MB).

You can refer to the Oracle official document Other Considerations mentioned:

Specify a higher value for the option MetaspaceSize to avoid early garbage collections
induced for class metadata. The amount of class metadata allocated for an application is
application-dependent and general guidelines do not exist for the selection of
MetaspaceSize. The default size of MetaspaceSize is platform-dependent and ranges
from 12 MB to about 20 MB.
The default size of MetaspaceSize depends on the platform and ranges from 12 MB to
approximately 20 MB.

Also, take a look at this experiment: Misunderstanding of the JVM parameter
MetaspaceSize .

2. Expansion and Full GC: When Metaspace usage increases and reaches -
XX:MetaspaceSize a specified threshold for the first time, a Full GC is triggered.
Thereafter, the JVM dynamically adjusts the threshold for triggering GC. If Metaspace
continues to grow, a Full GC may still be triggered each time a new threshold is reached
and expansion is required (the specific behavior depends on the garbage collector and
version). The garbage collector internally _capacity_until_GC determines whether the
Metaspace area has reached the threshold based on variables. The initialization code is as
follows:

-XX:MetaspaceSize=N #设置 Metaspace 的初始大小（是一个常见的误区，后面会解
释）

-XX:MaxMetaspaceSize=N #设置 Metaspace 的最大大小

bash
1
2

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 4/10

https://github.com/Snailclimb/JavaGuide/issues/1947
https://github.com/Snailclimb/JavaGuide/issues/1947
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html
https://mp.weixin.qq.com/s/jqfppqqd98DfAJHZhFbmxA
https://mp.weixin.qq.com/s/jqfppqqd98DfAJHZhFbmxA
https://mp.weixin.qq.com/s/jqfppqqd98DfAJHZhFbmxA

3. -XX:MaxMetaspaceSize Importance: If you don't explicitly set -
XX:MaxMetaspaceSize , the maximum size of the Metaspace is theoretically

limited by available native memory. In extreme cases (such as a class loader
leak causing constant class loading), this can indeed exhaust a significant
amount of native memory . Therefore, setting a reasonable -
XX:MaxMetaspaceSize upper limit is strongly recommended to prevent system impact.

Related reading: Issue Correction: MaxMetaspaceSize will not exhaust memory if size is
not specified #1204 .

Choosing the right garbage collector (GC) is crucial for your application's throughput and
latency. For a detailed introduction to garbage collection algorithms and collectors, see my
article: JVM Garbage Collection Explained (Key Points) .

JVM provides multiple GC implementations suitable for different scenarios:

Serial GC (Serial Garbage Collector): Single-threaded GC, suitable for client mode
or single-core CPU environment. Parameters: -XX:+UseSerialGC .
Parallel GC (Parallel Garbage Collector): Multi-threaded execution of Minor GC
for the young generation and, optionally, Full GC for the old generation -
XX:+UseParallelOldGC . Focused on throughput, it is the default GC for JDK 8.
Parameters: -XX:+UseParallelGC .
CMS GC (Concurrent Mark Sweep): Targets minimal collection pause times,
allowing most GC phases to execute concurrently with user threads. Suitable for
applications with high response time requirements. Deprecated in JDK 9 and removed
in JDK 14. Parameters: -XX:+UseConcMarkSweepGC .
G1 GC (Garbage-First Garbage Collector): The default GC for JDK 9 and later. It
divides the heap into multiple regions, balancing throughput and pause times, and
attempts to complete GC within predictable pause times. Parameters: -XX:+UseG1GC .

Garbage collection related

Selecting a garbage collector

void MetaspaceGC::initialize() {
 // Set the high-water mark to MaxMetapaceSize during VM
initialization since
 // we can't do a GC during initialization.
 _capacity_until_GC = MaxMetaspaceSize;
}

c
1
2
3
4
5

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 5/10

https://github.com/Snailclimb/JavaGuide/issues/1204
https://github.com/Snailclimb/JavaGuide/issues/1204
https://github.com/Snailclimb/JavaGuide/issues/1204
https://javaguide.cn/java/jvm/jvm-garbage-collection.html
https://javaguide.cn/java/jvm/jvm-garbage-collection.html

ZGC: A newer, low-latency GC that aims to reduce GC pause times to milliseconds or
even sub-milliseconds. It requires support from a newer JDK version. Parameters
(specific parameters may vary with version): -XX:+UseZGC , -XX:+UseShenandoahGC .

In a production environment or when troubleshooting GC issues, be sure to enable GC
logging . Detailed GC logs are key to analyzing and resolving GC issues.

The following are some recommended GC log parameters (applicable to common versions
such as JDK 8/11):

GC logging

--- 推荐的基础配置 ---
打印详细 GC 信息
-XX:+PrintGCDetails
打印 GC 发生的时间戳 (相对于 JVM 启动时间)
-XX:+PrintGCTimeStamps
打印 GC 发生的日期和时间 (更常用)
-XX:+PrintGCDateStamps
指定 GC 日志文件的输出路径，%t 可以输出日期时间戳
-Xloggc:/path/to/gc-%t.log

--- 推荐的进阶配置 ---
打印对象年龄分布 (有助于判断对象晋升老年代的情况)
-XX:+PrintTenuringDistribution
在 GC 前后打印堆信息
-XX:+PrintHeapAtGC
打印各种类型引用 (强/软/弱/虚) 的处理信息
-XX:+PrintReferenceGC
打印应用暂停时间 (Stop-The-World, STW)
-XX:+PrintGCApplicationStoppedTime

--- GC 日志文件滚动配置 ---
启用 GC 日志文件滚动
-XX:+UseGCLogFileRotation
设置滚动日志文件的数量 (例如，保留最近 14 个)
-XX:NumberOfGCLogFiles=14
设置每个日志文件的最大大小 (例如，50MB)
-XX:GCLogFileSize=50M

bash
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 6/10

Note: JDK 9 and later versions introduced a unified JVM logging framework (-Xlog),
which has different configuration methods. However, the above -Xloggc and rolling
parameters are generally still compatible or have corresponding new parameters.

It is very common for large applications to face out of memory errors which in turn leads to
application crash. This is a very critical scenario and it is difficult to reproduce and resolve
the issue.

That's why the JVM provides some parameters that dump the heap memory into a physical
file that can be used later to find leaks:

Dealing with OOM

--- 可选的辅助诊断配置 ---
打印安全点 (Safepoint) 统计信息 (有助于分析 STW 原因)
-XX:+PrintSafepointStatistics
-XX:PrintSafepointStatisticsCount=1

在发生 OOM 时生成堆转储文件
-XX:+HeapDumpOnOutOfMemoryError

指定堆转储文件的输出路径。<pid> 会被替换为进程 ID
-XX:HeapDumpPath=/path/to/heapdump/java_pid<pid>.hprof
示例：-XX:HeapDumpPath=/data/dumps/

(可选) 在发生 OOM 时执行指定的命令或脚本
例如，发送告警通知或尝试重启服务（需谨慎使用）
-XX:OnOutOfMemoryError="<command> <args>"
示例：-XX:OnOutOfMemoryError="sh /path/to/notify.sh"

(可选) 启用 GC 开销限制检查
如果 GC 时间占总时间比例过高（默认 98%）且回收效果甚微（默认小于 2% 堆内
存），

会提前抛出 OOM，防止应用长时间卡死在 GC 中。
-XX:+UseGCOverheadLimit

31
32

bash
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 7/10

-server : Explicitly enable the HotSpot VM in Server mode. (Usually the default on
64-bit JVMs).
-XX:+UseStringDeduplication (JDK 8u20+) Attempts to identify and share
char[] String objects with the same underlying array to reduce memory usage. This is

useful for scenarios with a large number of repeated strings.
-XX:SurvivorRatio=<ratio> : Sets the size ratio of the Eden area to a single Survivor

area. For example -XX:SurvivorRatio=8 , Eden:Survivor = 8:1.
-XX:MaxTenuringThreshold=<threshold> : Sets the maximum age threshold for

objects to be promoted from the young generation to the old generation (the age of an
object increases by 1 each time it survives a Minor GC). The default value is usually 15.
-XX:+DisableExplicitGC : Disable explicit calls in code System.gc() . It is

recommended to enable this feature to avoid triggering unnecessary Full GCs.
-XX:+UseLargePages : (Requires OS support) Try using large memory pages (e.g. 2MB

instead of 4KB). This may improve performance for memory-intensive applications, but
requires careful testing.
- XX:MinHeapFreeRatio=<percent> / -XX:MaxHeapFreeRatio=<percent> : Controls
the minimum/maximum percentage of heap memory that remains free after GC, used
for dynamic heap resizing (if -Xms and -Xmx are not equal). It is generally
recommended to set -Xms and -Xmx to be the same to avoid resizing overhead.

Note: The following parameters may be deprecated, removed, or enabled by
default in modern JVM versions and do not need to be set manually :

-XX:+UseLWPSynchronization : An older synchronization strategy option, modern
JVMs usually have more optimized implementations.
-XX:LargePageSizeInBytes : Usually -XX:+UseLargePages determined

automatically by or through OS configuration.
-XX:+UseStringCache : Removed.
-XX:+UseCompressedStrings : Superseded by the Compact Strings feature, which is

enabled by default in Java 9 and later.
-XX:+OptimizeStringConcat : String concatenation optimization (invokedynamic) is

the default behavior in Java 9 and later.

Other common parameters

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 8/10

This article provides a practical guide to common JVM parameter configurations for Java
developers, aiming to help readers understand and optimize the performance and stability
of Java applications. It highlights the following aspects:

1. Heap memory configuration: It is recommended to explicitly set the initial and
maximum heap memory (-Xms , - Xmx , usually set to the same) and the new
generation size (-Xmn or -XX:NewSize/-XX:MaxNewSize), which is crucial for GC
performance.

2. Metaspace Management (Java 8+): Clarified -XX:MetaspaceSize the actual role
of (the threshold that triggers the first Full GC, not the initial capacity), and strongly
recommends setting -XX:MaxMetaspaceSize to prevent potential native memory
exhaustion.

3. **Garbage Collector Selection and Logging:** This section describes the applicable
scenarios of different GC algorithms and emphasizes the necessity of enabling detailed
GC logging (-Xloggc , -XX:+PrintGCDetails etc.) for troubleshooting in production
and test environments.

4. OOM Troubleshooting: This section describes how to use -
XX:+HeapDumpOnOutOfMemoryError parameters such as to automatically generate a
heap dump file when an OOM occurs, so that you can perform subsequent memory leak
analysis.

5. Other Parameters: This section briefly introduces other useful parameters such as
string deduplication, and points out the current status of some old parameters.

For specific troubleshooting and tuning cases, please refer to this article compiled by the
author: JVM online problem troubleshooting and performance tuning cases .

Summarize

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 9/10

https://javaguide.cn/java/jvm/jvm-in-action.html
https://javaguide.cn/java/jvm/jvm-in-action.html

Recently Updated2025/4/25 06:41
Contributors: Snailclimb , guide , drlifeL , TommyMerlin , 1036956372 , Guide , Erzbir , Mr.Hope ,

paigeman , aucub , seven17777777 , hulingfeng , 1312255201

Copyright © 2025 Guide

9/22/25, 11:30 PM Summary of the most important JVM parameters | JavaGuide

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#设置堆内存大小-xms-和-xmx 10/10

