
This article will explain IoC & AOP from the following questions:

What is IoC?
What problem does IoC solve?
What is the difference between IoC and DI?
What is AOP?
What problem does AOP solve?
What are the application scenarios of AOP?
Why is AOP called aspect programming?
What are the ways to implement AOP?

First of all, let me state that IoC and AOP were not proposed by Spring. They actually
existed before Spring, but they were more theoretical at the time. Spring has implemented
these two ideas very well at the technical level.

IoC (Inversion of Control) stands for Inversion of Control. It's a concept, not a technical
implementation. It describes the creation and management of domain objects in Java
development.

For example: existing class A depends on class B

Traditional development method : often manually create a new object of B in class
A through the new keyword
The development method using IoC thinking : instead of creating objects with the
new keyword, we use the IoC container (Spring framework) to help us instantiate
objects. We can directly get the objects we need from the IoC container.

From the comparison of the above two development methods: we "lose a power" (the
power to create and manage objects), but we also gain a benefit (no longer having to
consider a series of things such as object creation and management).

IoC (Inversion of control)

What is IoC?

IoC & AOP Detailed Explanation
(Quickly Understand)

Guide frame About 3610 words About 12 minutesSpring

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 1/14

https://javaguide.cn/article/

Why is it called Inversion of Control?

Control : refers to the power to create (instantiate, manage) objects
Inversion : Control is given to the external environment (IoC container)

The idea behind IoC is that two parties do not rely on each other, and a third-party
container manages related resources. What are the benefits of this?

1. The coupling or dependency between objects is reduced;
2. Resources become easier to manage; for example, if you use the Spring container, you

can easily implement a singleton.

For example, there is an operation for User, which is developed using the two-layer
structure of Service and Dao.

What problem does IoC solve?

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 2/14

Without using the IoC concept, if the Service layer wants to use the specific
implementation of the Dao layer, it needs to manually create a new specific
implementation class in UserServiceImpl the new layer using the new keyword (it
cannot directly create a new interface class). IUserDao UserDaoImpl

Perfect, this approach is also achievable, but let's imagine the following scenario:

During development, a new requirement suddenly arises: IUserDao developing a new
implementation class for an interface. Because the server layer relies on IUserDao the
implementation, we need to modify UserServiceImpl the new object. If only one class
references IUserDao the implementation, the modification might be easy. However, if
IUserDao the implementation is referenced in numerous places, changing the
IUserDao implementation can be a real headache.

Using the idea of ​​IoC, we hand over the control (creation and management) of the object to
the IoC container to manage, and when we use it, we can just "ask" from the IoC container.

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 3/14

IoC (Inverse of Control) is a design concept or pattern that transfers control over
manually created objects within a program to a third party, such as an IoC
container. In the commonly used Spring framework, the IoC container is essentially a
Map (key, value) that stores various objects. However, IoC is also used in other languages ​​
and is not unique to Spring.

The most common and reasonable implementation of IoC is called Dependency Injection
(DI).

Martin Fowler mentioned in an article that IoC should be renamed as DI. The original text
is as follows, the original address is: https://martinfowler.com/articles/injection.html .

Is there a difference between IoC and DI?

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 4/14

https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html

What Lao Ma probably meant is that IoC is too common and vague, and many people will
be confused by it, so it is better to use DI to accurately name this pattern.

We will not involve too many professional terms here. The core purpose is to make the idea
of ​​AOP clear.

AOP (Aspect Oriented Programming) is aspect-oriented programming. AOP is a
continuation of OOP (object-oriented programming). The two complement each other and
are not contradictory.

The purpose of AOP is to separate cross-cutting concerns (such as logging, transaction
management, permission control, interface current limiting, interface idempotence, etc.)
from core business logic. Through technologies such as dynamic proxies and bytecode
manipulation, it enables code reuse and decoupling, improving code maintainability and
scalability. The purpose of OOP is to encapsulate business logic according to the attributes
and behaviors of objects. Through concepts such as classes, objects, inheritance, and
polymorphism, it achieves code modularity and hierarchy (which also enables code reuse),
improving code readability and maintainability.

AOP (Aspect oriented programming)

What is AOP?

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 5/14

AOP is called aspect-oriented programming because its core idea is to separate cross-
cutting concerns from the core business logic and form aspects .

Here is a summary of the key AOP terms (it doesn’t matter if you don’t understand, you
can continue reading):

Cross-cutting concerns : Common behaviors in multiple classes or objects (such as
logging, transaction management, permission control, interface current limiting,
interface idempotence, etc.).
Aspect : A class that encapsulates cross-cutting concerns. An aspect is a class. An
aspect can define multiple notifications to implement specific functionality.
JoinPoint : A join point is a specific moment when a method is called or executed
(such as a method call, an exception is thrown, etc.).
Advice : Advice is the action that an aspect performs at a join point. There are five types
of advice: before, after, after-returning, after-throwing, and around. The first four types
of advice execute before or after the target method, while around advice can control the
execution of the target method.
Pointcut : A pointcut is an expression that matches join points that should be
enhanced by an aspect. Pointcuts can be defined using annotations, regular expressions,

Why is AOP called Aspect-Oriented Programming?

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 6/14

logical operators, and more. For example, they execution(* com.xyz.service..*
(..)) match com.xyz.service classes or interfaces within a package and its
subpackages.
Weaving : Weaving is the process of connecting aspects to target objects, applying
advice to join points that match pointcuts. There are two common weaving scenarios:
compile-time weaving (e.g., AspectJ) and runtime weaving (e.g., AspectJ and Spring
AOP).

Before (pre-notification): triggered before the target object's method is called
After (post notification): triggered after the target object's method is called
AfterReturning (return notification): triggered after the method call of the target
object is completed and the result value is returned
AfterThrowing (Exception Notification): Triggered after a method on the target object
throws or triggers an exception. AfterReturning and AfterThrowing are mutually
exclusive. If the method call succeeds without exception, a value is returned; if the
method throws an exception, no value is returned.
Around advice: Programmatically control the method call of the target object. Around
advice has the widest range of operation among all advice types. Because it can directly

What are the common types of AOP advice?

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 7/14

obtain the target object and the method to be executed, around advice can arbitrarily do
things before or after the target object's method call, or even not call the target object's
method.

OOP doesn't handle common behaviors that are spread across multiple classes or objects
well (such as logging, transaction management, permission control, interface throttling,
interface idempotence, and so on). These behaviors are often called cross-cutting
concerns . If we duplicate these behaviors in every class or object, the code becomes
redundant, complex, and difficult to maintain.

AOP can separate cross-cutting concerns (such as logging, transaction management,
permission control, interface current limiting, interface idempotence, etc.) from core
business logic (core concerns) , achieving separation of concerns.

Let’s take logging as an example. If we need to log certain methods in a unified format,
before using AOP technology, we need to write the logging logic code one by one, which is
all repetitive logic.

What problem does AOP solve?

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 8/14

After using AOP technology, we can encapsulate the logging logic into an aspect, and then
use pointcuts and notifications to specify which methods need to perform logging
operations.

public CommonResponse<Object> method1() {
 //
 xxService.method1();
 //
 //
 ServletRequestAttributes attributes =
(ServletRequestAttributes)
RequestContextHolder.getRequestAttributes();
 HttpServletRequest request = attributes.getRequest();
 // ...
 return CommonResponse.success();
}

public CommonResponse<Object> method2() {
 //
 xxService.method2();
 //
 //
 ServletRequestAttributes attributes =
(ServletRequestAttributes)
RequestContextHolder.getRequestAttributes();
 HttpServletRequest request = attributes.getRequest();
 // ...
 return CommonResponse.success();
}

// ...

//
@Target({ElementType.PARAMETER,ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Log {

 /**
 *
 */

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

java
1
2
3
4
5
6
7
8
9
10

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 9/14

In this case, we can implement logging with one line of annotation:

 String description() default "";

 /**
 * INSERT DELETE UPDATE OTHER
 */
 MethodType methodType() default MethodType.OTHER;
}

//
@Component
@Aspect
public class LogAspect {
 // Log
 @Pointcut("@annotation(cn.javaguide.annotation.Log)")
 public void webLog() {
 }

 /**
 *
 */
 @Around("webLog()")
 public Object doAround(ProceedingJoinPoint joinPoint) throws
Throwable {
 //
 }

 //
}

@Log(description = "method1",methodType = MethodType.INSERT)
public CommonResponse<Object> method1() {
 //
 xxService.method1();
 //
 return CommonResponse.success();
}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

java
1
2
3
4
5
6
7

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 10/14

Logging: Customize logging annotations and use AOP to implement logging with just
one line of code.
Performance statistics: Use AOP to count the execution time of the target method before
and after execution, which facilitates optimization and analysis.
Transaction management: @Transactional Annotations allow Spring to manage
transactions for us, such as rolling back exceptions, eliminating the need for duplicate
transaction management logic. @Transactional Annotations are implemented based
on AOP.
Permission control: Use AOP to determine whether the user has the required
permissions before the target method is executed. If so, the target method is executed;
otherwise, it is not executed. For example, Spring Security uses
@PreAuthorize annotations to customize permission checks in just one line of code.

Interface current limiting: Use AOP to limit the request through specific current limiting
algorithms and implementations before the target method is executed.
Cache management: Use AOP to read and update the cache before and after the target
method is executed.
…

Common implementation methods of AOP include dynamic proxy and bytecode
manipulation.

Spring AOP is based on dynamic proxy. If the object to be proxied implements an interface,
Spring AOP will use JDK Proxy to create a proxy object. However, for objects that do not
implement the interface, JDK Proxy cannot be used for proxying. In this case, Spring AOP
will use CGLIB to generate a subclass of the proxied object as a proxy, as shown in the
following figure:

What are the application scenarios of AOP?

What are the ways to implement AOP?

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 11/14

**Are the dynamic proxy strategies of Spring Boot and Spring the same? **Actually, they
are different. Many people have misunderstood them.

Prior to Spring Boot 2.0, JDK dynamic proxies were used by default . If the target class
did not implement an interface, an exception would be thrown, and the developer had to
explicitly configure (spring.aop.proxy-target-class=true) CGLIB dynamic
proxies or inject interfaces to resolve the issue. The code for automatically configuring
AOP in Spring Boot 1.5.x is as follows:

@Configuration
@ConditionalOnClass({ EnableAspectJAutoProxy.class, Aspect.class,
Advice.class })
@ConditionalOnProperty(prefix = "spring.aop", name = "auto",
havingValue = "true", matchIfMissing = true)
public class AopAutoConfiguration {

@Configuration
@EnableAspectJAutoProxy(proxyTargetClass = false)

 // spring.aop.proxy-target-class=false

 // Spring JDK
@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-

target-class", havingValue = "false", matchIfMissing = true)
public static class JdkDynamicAutoProxyConfiguration {

}

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 12/14

Starting with Spring Boot 2.0, if the user does not configure anything, CGLIB dynamic
proxy is used by default . If you need to force the use of JDK dynamic proxy, you can add:
to the configuration file spring.aop.proxy-target-class=false . The Spring Boot 2.0
automatic configuration AOP code is as follows:

@Configuration
@EnableAspectJAutoProxy(proxyTargetClass = true)

 // spring.aop.proxy-target-class=true
 // CGLIB Spring

@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-
target-class", havingValue = "true", matchIfMissing = false)

public static class CglibAutoProxyConfiguration {

}

}

@Configuration
@ConditionalOnClass({ EnableAspectJAutoProxy.class, Aspect.class,
Advice.class,

AnnotatedElement.class })
@ConditionalOnProperty(prefix = "spring.aop", name = "auto",
havingValue = "true", matchIfMissing = true)
public class AopAutoConfiguration {

@Configuration
@EnableAspectJAutoProxy(proxyTargetClass = false)

 // spring.aop.proxy-target-class=false
 // JDK Spring

@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-
target-class", havingValue = "false", matchIfMissing = false)

public static class JdkDynamicAutoProxyConfiguration {

}

@Configuration
@EnableAspectJAutoProxy(proxyTargetClass = true)

 // spring.aop.proxy-target-class=true

 // Spring CGLIB

19
20
21
22
23
24

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 13/14

Of course you can also use AspectJ ! Spring AOP has integrated AspectJ, which should be
considered the most complete AOP framework in the Java ecosystem.

Spring AOP is a runtime enhancement, while AspectJ is a compile-time
enhancement. Spring AOP is based on proxying, while AspectJ is based on bytecode
manipulation.

Spring AOP has integrated AspectJ, which is arguably the most complete AOP framework
in the Java ecosystem. AspectJ is more powerful than Spring AOP, but Spring AOP is
relatively simpler.

If we have relatively few aspects, then the performance difference between the two is not
significant. However, when there are too many aspects, it is better to choose AspectJ,
which is much faster than Spring AOP.

AOP in Spring Boot, is it a JDK dynamic proxy or a Cglib dynamic
proxy? https://www.springcloud.io/post/2022-01/springboot-aop/
Spring Proxying Mechanisms: https://docs.spring.io/spring-
framework/reference/core/aop/proxying.html

Recently Updated2025/4/2 14:46
Contributors: Guide , Mr.Hope , ShimenTian , gaohang

refer to

Copyright © 2025 Guide

@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-
target-class", havingValue = "true", matchIfMissing = true)

public static class CglibAutoProxyConfiguration {

}

}

25

9/22/25, 3:32 PM IoC & AOP Explained (Quickly) | JavaGuide

https://javaguide.cn/system-design/framework/spring/ioc-and-aop.html#aop-实现方式有哪些 14/14

https://www.springcloud.io/post/2022-01/springboot-aop/
https://www.springcloud.io/post/2022-01/springboot-aop/
https://docs.spring.io/spring-framework/reference/core/aop/proxying.html
https://docs.spring.io/spring-framework/reference/core/aop/proxying.html
https://docs.spring.io/spring-framework/reference/core/aop/proxying.html

