1. CAS

Example (Java pseudo-code)

java (P Copy code

(0 A

oldvValue, newValue;

{
oldvalue = counter.get();
newValue = oldValue + 1;

('counter.compareAndSet (oldValue, newValue));

2. Runnable and Callable Thread

1. Runnable: Run the thread
2. Callable: return the value, usually go with Future

3. Thread Pool Executor

1. workQueue: number of jobs

2. corePoolSize: The minimum number of threads that the
pool tries to keep alive even if they are idle.

3. maximumPoolSize: The maximum number of threads
created when the length of workQueue == corePoolSize

4. Why we use ArrayBlockingQueue but not
ArrayList or LinkedBlockingQueue

1. ArrayList: Insert/Detete O(N)
2. LinkedBlockingQueue: unbounded.

=> Using ArrayBlockingQueue to make sure it insert/delete O(1),
FCFS and bounded elements.

5. Execute and Submit

1. Execute: run the thread function.
2. Submit: return a value when calling get().

6. LinkedBlockingQueue and
SynchronousQueue

Other queues like LinkedBlockingQueue or
SynchronousQueue behave differently:

e LinkedBlockingQueue (unbounded) — thread pool never
grows beyond corePoolSize.

e SynchronousQueue — always tries to create new threads
immediately.

7. Types of Thread Pool

M Fixed Thread Pool

¢ Created by: Executors.newFixedThreadPool(n)

* Behavior:
* Has a fixed number of threads (n).
* Tasks beyond that number wait in an unbounded queue.
+ Threads never die, even if idle.

* Use case: Predictable number of threads, e.g., processing a fixed number of tasks concurrently.

java (P Copy code

= Executors.newFixedThreadPool(3);

@ cached Thread Pool

¢ Created by: Executors.newCachedThreadPool()
* Behavior:
* Creates new threads as needed.
» Threads that are idle for 60 seconds are terminated.
s Good for many short-lived tasks.
* Use case: Highly dynamic workloads, tasks submitted sporadically.

java (9 Copy code

= Executors.newCachedThreadPool();

@ Single Thread Pool
¢ Created by: Executors.newSingleThreadExecutor()
* Behavior:
¢ Only one thread in the pool.
* Tasks are executed sequentially in submission order.
* Use case: Ensure serial execution of tasks, like logging or ordered updates.

java (5 Copy code

= Executors.newSingleThreadExecutor();

@ Scheduled Thread Pool

* Created by: Executors.newScheduledThreadPool(n)

« Behavior:
¢ Can schedule tasks to run after a delay or periodically.
¢ Fixed number of threads.

* Use case: Timers, periodic tasks, delayed execution.

java (P Copy code

= Executors.newScheduledThreadPool(2);
executor.schedule((}) -> System.out.println(Y, 5, TimeUnit.SECONDS);

B Work Stealing Pool
* Created by: Executors.newWorkStealingPool() (Java 8+)

* Behavior:
* Uses ForkJoinPool internally.
* Threads steal tasks from other threads’ queues to balance load.
* |deal for many small tasks.

* Use case: Parallel algorithms, divide-and-conquer tasks.

java (P Copy code

= Executors.newWorkStealingPool();

	1. CAS
	2. Runnable and Callable Thread
	1.​Runnable: Run the thread
	2.​Callable: return the value, usually go with Future

	3. Thread Pool Executor
	1.​workQueue: number of jobs
	2.​corePoolSize: The minimum number of threads that the pool tries to keep alive even if they are idle.
	3.​maximumPoolSize: The maximum number of threads created when the length of workQueue == corePoolSize

	4. Why we use ArrayBlockingQueue but not ArrayList or LinkedBlockingQueue
	1.​ArrayList: Insert/Detete O(N)
	2.​LinkedBlockingQueue: unbounded.
	=> Using ArrayBlockingQueue to make sure it insert/delete O(1), FCFS and bounded elements.

	5. Execute and Submit
	1.​Execute: run the thread function.
	2.​Submit: return a value when calling get().

	6. LinkedBlockingQueue and SynchronousQueue
	Other queues like LinkedBlockingQueue or SynchronousQueue behave differently:​
	●​LinkedBlockingQueue (unbounded) → thread pool never grows beyond corePoolSize.​
	●​SynchronousQueue → always tries to create new threads immediately.​

	
	
	
	
	
	
	
	
	7. Types of Thread Pool

