2. CompletableFuture (Java 8)
¢ Implements Future + adds powerful async features.

* Supports callbacks, chaining, combining, and exception handling.
¢ Non-blocking by default: you can register what to do when the result is ready.

Example:

java (9 Copy code

CompletableFuture.supplyAsync(() —
.thenApply(r — r x 2)
.thenAccept(r —> System.out.println(

4 Features:

Non-blocking continuations (thenApply , thenAccept, thenRun).
Composition (thenCombine , all0f, anyOf).
Error handling (exceptionally , handle).

Custom executors (not limited to common pool).

3.Can CompletableFuture replace Future ?

& Yes — because CompletableFuture implements Future .
So you can use a CompletableFuture anywhere a Future is expected:
java (¥ Copy code

Future<Integer> f = CompletableFuture.completedFuture(42);
System.out.println(f.get());

But not the other way around:

A plain Future cannot magically give you the advanced features of CompletableFuture .

4. Rule of thumb

* Use Future - only in legacy code or when you truly just need get() /cancel{) and nothing else.
* Use CompletableFuture -> for new code, async pipelines, or any situation where you want callbacks,

chaining, or better control.

® In practice:

s These days, CompletableFuture is almost always preferred.
e Future is still around for backward compatibility with older APls.

1. Thread do not return value, Future return value

	1. Thread do not return value, Future return value

