9 Copy code

value) InterruptedException {

(available) {
wait();
+
data = value;
available = F
System.out.println(+ value);
notify();

InterruptedException {
(lavailable) {
wait();

}
available = g
System.out.println(+ data);
notify();

data;

Producer thread:

java (9 Copy code

{

SharedResource resource;

(SharedResource resource) {
this.resource = resource;

)<

(=1; i <=5; i++) {
resource.produce(i);
Thread.sleep(500);

(InterruptedException e) {
Thread.currentThread().interrupt();

Consumer thread:

java (3 Copy code

{

SharedResource resource;
(SharedResource resource) {
this.resource = resource;
0O {
(=1; i<=5; i++) {

resource.consume();
Thread.sleep(WA

(InterruptedException e) {
Thread.currentThread().interrupt();

Running the example:

java (9 Copy code

{
(String[] args) {
= ();
(resource);
(resource);

producer.start();
consumer.start();

E Sample Output

makefile (3 Copy code

Produced:
Consumed:
Produced:
Consumed:

1. Lock and Object

* Alock belongs to an object, not a thread.
* A thread acquires/release a lock when entering/exiting a synchronized block on that object.

s wait() simply makes the current thread pause and release the object’s lock it is holding.

2. Sleep

e sleep() isjusta timer = “pause me for X ms" = belongs to Thread .

* wait() is about coordination on a shared object monitor - belongs to Object .

3. Context Switch

/# What is a Context Switch?

A context switch is when the CPU stops running one thread (or process) and starts running another.

Since a CPU core can only execute one thread at a time, the operating system (OS) scheduler rapidly
switches between threads to give the illusion of parallelism (unless you have multiple CPU cores).

4. CPU-intensive and |O-intensive

% Will running multiple threads on a single-core CPU be efficient?

Whether a single-core CPU can run multiple threads simultaneously efficiently depends on the type of

thread and the nature of the task. Generally speaking, there are two types of threads:

1. CPU-intensive : CPU-intensive threads mainly perform calculations and logic processing, and require a
large amount of CPU resources.

2. I0-intensive : I0-intensive threads mainly perform input and output operations, such as reading and
writing files, network communication, etc., and need to wait for the response of IO devices without taking

up too many CPU resources.

On a single-core CPU, only one thread can run at a time; other threads must wait for CPU time slices. If the

thread is CPU-bound, running multiple threads simultaneously will result in frequent thread switching, in-
creasing system overhead and reducing efficiency. If the thread is I/0-bound, running multiple threads si-

multaneously can utilize the CPU's idle time while waiting for I/O, improving efficiency.

Therefore, for a single-core CPU, if the task is CPU-intensive, then running many threads will affect efficien-
cy; if the task is I/O-intensive, then running many threads will improve efficiency. Of course, the "many"

here should be moderate and should not exceed the upper limit of the system's tolerance.

5. Prevent Deadlock

1. Lock ordering

Always acquire locks in a fixed global order.

java (9 Copy code

() {
= lockA.hashCode() < lockB.hashCode() ? lockA : lockB;
= (first == lockA) ? lockB : lockA;

(first) {
(second) {

2. Use tryLock() with timeout
Instead of blocking forever, attempt to acquire a lock with a timeout.

java (P Copy code

()i
();

(lockA.tryLock(100, TimeUnit.MILLISECONDS}) {
{
(lockB.tryLock(100, TimeUnit.MILLISECONDS)) {
{

{
lockB.unlock();

{
lockA.unlock();

« If the lock isn't acquired, you can retry or back off.

	1. Lock and Object
	2. Sleep

