
1. Heap Generations Recap
●​ Young Generation:​

○​ Divided into Eden + Survivor spaces (S0, S1).​

○​ Most new objects are allocated in Eden.​

○​ GC here is minor GC (fast, frequent).​

●​ Old Generation (Tenured):​

○​ Stores long-lived objects.​

○​ Collected during major/full GC (slower, less frequent).​

2. Object Lifecycle in GC

1.​New objects → Eden​

○​ When you create an object, it usually goes to Eden
space.​

2.​Minor GC happens​

○​ If Eden fills up, a minor GC runs.​

○​ Live objects in Eden are copied to a Survivor space
(S0 or S1).​

○​ Dead objects (unreachable) are cleared.​

3.​Survivor ↔ Survivor copying​

○​ On each minor GC, live objects in Eden + one
Survivor space are copied into the other Survivor
space.​

○​ Survivor spaces flip roles (from–space, to–space).​

4.​Promotion (tenuring) to Old Generation​

○​ Objects don’t stay in Survivor forever. They eventually
get promoted to the Old Generation when:​

5.​Promotion rules:​

○​ Age threshold exceeded:​

■​ Each time an object survives a minor GC, its age
increases (stored in the object header).​

■​ If age ≥ MaxTenuringThreshold (default
usually 15), it’s promoted.​

○​ Survivor space overflow:​

■​ If Survivor space doesn’t have enough room,
some objects are promoted early.​

○​ Large objects:​

■​ Very large objects may be allocated directly in
Old Generation if they don’t fit in Eden/Survivor.​

3. Example Walkthrough

●​ You create 1000 small objects → go into Eden.​

●​ Minor GC runs → survivors copied to S0. (Age=1)​

●​ Next Minor GC → survivors copied to S1. (Age=2)​

●​ Repeat… until MaxTenuringThreshold is reached.
●​ Then → promoted to Old Generation.​

4. Why do we promote?
●​ Young gen is designed for short-lived objects (most die

fast).​

●​ Old gen is for long-lived objects (cached data, sessions,
etc.).​

●​ This separation makes GC more efficient:​

○​ Minor GC = frequent but cheap.​

○​ Major GC = rare but expensive.​

⚡ In short:

●​ Eden → Survivor (S0/S1) → Old Generation.​

●​ Promotion happens when object ages out, Survivor space
is full, or object is too large.

5. Minor GC

●​ What it collects:​

○​ Only the Young Generation (Eden + Survivor spaces).​

●​ Trigger:​

○​ Happens when Eden space is full.​

●​ Process:​

○​ Mark live objects in Eden and Survivor.​

○​ Copy survivors to the other Survivor space (or Old Gen
if needed).​

○​ Clear Eden and the used Survivor.​

●​ Cost:​

○​ Usually fast (small region, most objects die young).​

●​ Pause:​

○​ Causes a stop-the-world pause, but very short.​

👉 Example: If your program keeps creating many short-lived
objects (like strings, request objects), Minor GC will happen
frequently.

6. Major GC (a.k.a. Old GC)
●​ What it collects:​

○​ The Old Generation (tenured space).​

●​ Trigger:​

○​ Happens when Old Gen is full (after objects get

promoted from Young Gen).​

●​ Process:​

○​ Can use Mark-Sweep-Compact or concurrent
collectors (CMS, G1, ZGC, etc.).​

●​ Cost:​

○​ Much slower than Minor GC (more objects to scan,
compaction may be needed).​

●​ Pause:​

○​ Usually longer stop-the-world pauses, though
concurrent GCs (CMS, G1, ZGC, Shenandoah) reduce
this.

	1. Heap Generations Recap
	●​Young Generation:​
	○​Divided into Eden + Survivor spaces (S0, S1).​
	○​Most new objects are allocated in Eden.​
	○​GC here is minor GC (fast, frequent).​
	●​Old Generation (Tenured):​
	○​Stores long-lived objects.​
	○​Collected during major/full GC (slower, less frequent).​

	2. Object Lifecycle in GC
	1.​New objects → Eden​
	○​When you create an object, it usually goes to Eden space.​
	2.​Minor GC happens​
	○​If Eden fills up, a minor GC runs.​
	○​Live objects in Eden are copied to a Survivor space (S0 or S1).​
	○​Dead objects (unreachable) are cleared.​
	3.​Survivor ↔ Survivor copying​
	○​On each minor GC, live objects in Eden + one Survivor space are copied into the other Survivor space.​
	○​Survivor spaces flip roles (from–space, to–space).​
	4.​Promotion (tenuring) to Old Generation​
	○​Objects don’t stay in Survivor forever. They eventually get promoted to the Old Generation when:​
	5.​Promotion rules:​
	○​Age threshold exceeded:​
	■​Each time an object survives a minor GC, its age increases (stored in the object header).​
	■​If age ≥ MaxTenuringThreshold (default usually 15), it’s promoted.​
	○​Survivor space overflow:​
	■​If Survivor space doesn’t have enough room, some objects are promoted early.​
	○​Large objects:​
	■​Very large objects may be allocated directly in Old Generation if they don’t fit in Eden/Survivor.​

	
	
	
	
	
	3. Example Walkthrough
	●​You create 1000 small objects → go into Eden.​
	●​Minor GC runs → survivors copied to S0. (Age=1)​
	●​Next Minor GC → survivors copied to S1. (Age=2)​
	●​Repeat… until MaxTenuringThreshold is reached.
	●​Then → promoted to Old Generation.​

	4. Why do we promote?
	●​Young gen is designed for short-lived objects (most die fast).​
	●​Old gen is for long-lived objects (cached data, sessions, etc.).​
	●​This separation makes GC more efficient:​
	○​Minor GC = frequent but cheap.​
	○​Major GC = rare but expensive.​
	
	⚡ In short:
	●​Eden → Survivor (S0/S1) → Old Generation.​
	●​Promotion happens when object ages out, Survivor space is full, or object is too large.

	5. Minor GC
	●​What it collects:​
	○​Only the Young Generation (Eden + Survivor spaces).​
	●​Trigger:​
	○​Happens when Eden space is full.​
	●​Process:​
	○​Mark live objects in Eden and Survivor.​
	○​Copy survivors to the other Survivor space (or Old Gen if needed).​
	○​Clear Eden and the used Survivor.​
	●​Cost:​
	○​Usually fast (small region, most objects die young).​
	●​Pause:​
	○​Causes a stop-the-world pause, but very short.​
	👉 Example: If your program keeps creating many short-lived objects (like strings, request objects), Minor GC will happen frequently.

	
	
	6. Major GC (a.k.a. Old GC)
	●​What it collects:​
	○​The Old Generation (tenured space).​
	●​Trigger:​
	○​Happens when Old Gen is full (after objects get promoted from Young Gen).​
	●​Process:​
	○​Can use Mark-Sweep-Compact or concurrent collectors (CMS, G1, ZGC, etc.).​
	●​Cost:​
	○​Much slower than Minor GC (more objects to scan, compaction may be needed).​
	●​Pause:​
	○​Usually longer stop-the-world pauses, though concurrent GCs (CMS, G1, ZGC, Shenandoah) reduce this.

